Prediction of maximum pitting corrosion depth in oil and gas pipelines

粒子群优化 支持向量机 点蚀 管道运输 腐蚀 遗传算法 管道(软件) 过程(计算) 启发式 萤火虫算法 工程类 计算机科学 算法 机器学习 人工智能 机械工程 材料科学 冶金 操作系统
作者
Mohamed El Amine Ben Seghier,Behrooz Keshtegar,Kong Fah Tee,Tarek Zayed,Rouzbeh Abbassi,T. Nguyen‐Thoi
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:112: 104505-104505 被引量:149
标识
DOI:10.1016/j.engfailanal.2020.104505
摘要

Avoiding failures of corroded steel structures are critical in offshore oil and gas operations. An accurate prediction of maximum depth of pitting corrosion in oil and gas pipelines has significance importance, not only to prevent potential accidents in future but also to reduce the economic charges to both industry and owners. In the present paper, efficient hybrid intelligent model based on the feasibility of Support Vector Regression (SVR) has been developed to predict the maximum depth of pitting corrosion in oil and gas pipelines, whereas the performance of well-known meta-heuristic optimization techniques, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Firefly Algorithm (FFA), are considered to select optimal SVR hyper-parameters. These nature-inspired algorithms are capable of presenting precise optimal predictions and therefore, hybrid models are developed to integrate SVR with GA, PSO, and FFA techniques. The performances of the proposed models are compared with the traditional SVR model where its hyper-parameters are attained through trial and error process on the one hand and empirical models on the other. The developed models have been applied to a large database of maximum pitting corrosion depth. Computational results indicate that hybrid SVR models are efficient tools, which are capable of conducting a more precise prediction of maximum pitting corrosion depth. Moreover, the results revealed that the SVR-FFA model outperformed all other models considered in this study. The developed SVR-FFA model could be adopted to support pipeline operators in the maintenance decision-making process of oil and gas facilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助@@@采纳,获得10
刚刚
paipai完成签到 ,获得积分10
刚刚
1秒前
滟滟完成签到,获得积分10
1秒前
Wjc完成签到,获得积分20
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
脑洞疼应助lunhui6453采纳,获得10
3秒前
小黄完成签到 ,获得积分10
5秒前
mochi发布了新的文献求助10
5秒前
TWOTP完成签到,获得积分10
5秒前
QDF发布了新的文献求助10
5秒前
丘比特应助在南方看北方采纳,获得10
5秒前
6秒前
6秒前
DryDry完成签到,获得积分10
8秒前
崔小乐给崔小乐的求助进行了留言
8秒前
8秒前
8秒前
别理我完成签到,获得积分20
9秒前
暮霭沉沉应助鱿鱼采纳,获得50
9秒前
Kelly完成签到,获得积分10
9秒前
yuon完成签到,获得积分10
9秒前
10秒前
10秒前
伞下铭发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
欣xin完成签到,获得积分20
13秒前
螃蟹完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
@@@发布了新的文献求助10
14秒前
撒旦撒完成签到,获得积分10
14秒前
14秒前
打打应助江林林采纳,获得10
15秒前
15秒前
vicky完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952