Current Density Regulated Atomic to Nanoscale Process on Li Deposition and Solid Electrolyte Interphase Revealed by Cryogenic Transmission Electron Microscopy

透射电子显微镜 纳米尺度 材料科学 相间 沉积(地质) 电解质 电子显微镜 化学物理 纳米技术 化学 物理化学 电极 光学 沉积物 遗传学 古生物学 物理 生物
作者
Yaobin Xu,Haiping Wu,Hao Jia,Ji‐Guang Zhang,Wu Xu,Chongmin Wang
出处
期刊:ACS Nano [American Chemical Society]
卷期号:14 (7): 8766-8775 被引量:65
标识
DOI:10.1021/acsnano.0c03344
摘要

Current density has been perceived to play a critical rule in controlling Li deposition morphology and solid electrolyte interphase (SEI). However, the atomic level mechanism of the effect of current density on Li deposition and the SEI remains unclear. Here based on cryogenic transmission electron microscopy (TEM) imaging combined with energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) electronic structure analyses, we reveal the atomic level correlation of Li deposition morphology and SEI with current density. We discover that increasing current density leads to increased overpotential for Li nucleation and growth, leading to the transition from growth-limited to nucleation-limited mode for Li dendrites. Independent of current density, the electrochemically deposited Li metal (EDLi) exhibits crystalline whisker-like morphology. The SEI formed at low current density (0.1 mA cm-2) is monolithic amorphous; while, a current density of above 2 mA cm-2 leads to a mosaic structured SEI, featuring an amorphous matrix with Li2O and LiF dispersoids, and the thickness of the SEI increases with the increase of current density. Specifically, the Li2O particles are spatially located at the top surface of the SEI, while LiF is spatially adjacent to the Li-SEI interface. These results offer possible ways of regulating crucial microstructural and chemical features of EDLi and SEI through altering deposit conditions and consequently direct correlation with battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助科研通管家采纳,获得30
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
SHENJING发布了新的文献求助10
1秒前
jia应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
巴拉巴拉应助Gakay采纳,获得20
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
独特绿蓉完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助科研小驴采纳,获得10
6秒前
6秒前
白茶泡泡球完成签到,获得积分20
7秒前
围城发布了新的文献求助10
8秒前
852应助人间烟火采纳,获得10
8秒前
9秒前
丁爽完成签到,获得积分10
9秒前
10秒前
钱嘉裕发布了新的文献求助10
10秒前
Gakay完成签到,获得积分10
11秒前
英姑应助王王采纳,获得10
12秒前
鱿鱼阿章完成签到,获得积分10
13秒前
13秒前
田様应助科研老头采纳,获得10
14秒前
xjcy应助SHENJING采纳,获得10
14秒前
林lin发布了新的文献求助10
15秒前
demo发布了新的文献求助10
15秒前
仁继宪发布了新的文献求助10
16秒前
传奇3应助w。采纳,获得10
16秒前
阿玖发布了新的文献求助10
17秒前
Yeol发布了新的文献求助30
17秒前
21秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207432
求助须知:如何正确求助?哪些是违规求助? 2856761
关于积分的说明 8107137
捐赠科研通 2522079
什么是DOI,文献DOI怎么找? 1355350
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613478