Optimal threshold in low-dose CT quantification of emphysema

医学 斯皮尔曼秩相关系数 核医学 肺癌 秩相关 肺功能测试 相关性 放射科 人口 肺气肿 内科学 统计 数学 几何学 环境卫生
作者
Xianxian Cao,Chenwang Jin,Tao Tan,Youmin Guo
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:129: 109094-109094 被引量:6
标识
DOI:10.1016/j.ejrad.2020.109094
摘要

Objective Low–dose CT is now widely used in the screening of lung cancer and the detection of pulmonary nodules. There has also been increasing interest in using Low–dose CT for evaluating emphysema. In conventional dose CT, the threshold of −950HU is a common threshold for density-based emphysema quantification for worldwide population. However, the optimal threshold for assessing emphysema at low-dose CT has not been determined. The purpose of this study is to determine the optimal threshold for low-dose CT quantification of emphysema for Chinese population. Materials and methods In this study, 548 low-dose chest CT examinations acquired from different subjects (119 none, 49 mild, 163 moderate, 152 severe, and 65 very severe obstruction) are collected. At the level of the entire lung and individual lobes, the extent of emphysema was quantified by the percentage of the low attenuation area (LAA%) at a wide range of thresholds from −850HU to −1000HU. Both Pearson and Spearman’s rank correlation coefficients were used to assess the correlations between 1) LAA% and pulmonary functions and 2) LAA% and the five-category classification. The statistical significance of the difference between correlation coefficients were evaluated using Steiger’Z test. Results LAA% had a good correlation with both pulmonary function (|r| = 0.1–0.600, p < 0.001) and the five-category classification (r = 0.163–0.602, p < 0.001) in both the entire lung and individual lobes under different thresholds. The highest correlation coefficient is obtained at −940HU instead of -950HU. Conclusion Low-dose CT can be used for quantitative assessment of emphysema, and the threshold of -940HU is a suitable threshold for quantifying emphysema in low-dose CT images for Chinese population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyg完成签到,获得积分20
1秒前
坚强的樱发布了新的文献求助10
1秒前
baodingning完成签到,获得积分10
2秒前
2秒前
公茂源发布了新的文献求助30
2秒前
热爱完成签到,获得积分10
3秒前
4秒前
叫滚滚发布了新的文献求助10
5秒前
星瑆心完成签到,获得积分10
5秒前
啦啦啦啦啦完成签到,获得积分10
6秒前
Lyg发布了新的文献求助10
6秒前
Dksido完成签到,获得积分10
7秒前
兰博基尼奥完成签到,获得积分10
7秒前
热情芷荷发布了新的文献求助10
9秒前
random完成签到,获得积分10
10秒前
10秒前
果果瑞宁完成签到,获得积分10
10秒前
11秒前
机智小虾米完成签到,获得积分20
11秒前
goldenfleece完成签到,获得积分10
12秒前
科研通AI2S应助学者采纳,获得10
12秒前
小杨完成签到,获得积分10
13秒前
sutharsons应助科研通管家采纳,获得30
14秒前
14秒前
Ava应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得30
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
Eric_Lee2000应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
王子完成签到,获得积分10
15秒前
李繁蕊发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808