内胚层
外胚层
中胚层
胚芽层
毒性
细胞生物学
银纳米粒子
体外
发育毒性
胚胎干细胞
生物
胚胎发生
胚胎
肝细胞
化学
男科
内科学
生物化学
诱导多能干细胞
纳米技术
材料科学
纳米颗粒
医学
遗传学
胎儿
基因
怀孕
作者
Bowen Hu,Nuoya Yin,Renjun Yang,Shengxian Liang,Siwei Liang,Francesco Faiola
标识
DOI:10.1016/j.scitotenv.2020.138433
摘要
Silver nanoparticles (AgNPs) are commonly utilized industrial compounds mostly because of their antimicrobial properties. Nevertheless, our understanding of their potential developmental toxicity in humans is still limited. Embryonic stem cells (ESCs) are powerful in vitro tools for developmental toxicity assessments of chemicals. Here, we evaluated the potential developmental toxicity during early embryogenesis of AgNPs and AgNO3 with human ESC (hESC)-based differentiation systems in vitro. We found that human relevant concentrations of AgNPs and Ag ions affected the specification of two of the three primary germ layers, endoderm and mesoderm, without drastically affecting ectoderm. Furthermore, the two forms of Ag impaired the generation and functions of hepatocytes-like cells derived from endoderm, by decreasing the expression of important liver markers such as AFP, ALB, and HNF4A, and altering glycogen storage. When considering cardiac development, AgNPs and AgNO3 manifested opposite adverse effects, in that AgNPs increased while AgNO3 decreased the expression of typical cardiac markers (NKX2.5, MYH6, and ISL) in hESC-derived cardiomyocytes. In conclusion, our findings argue for a potential developmental toxicity of AgNP doses we are exposed to, or levels detected in the human body, especially at very early stages during embryogenesis, and which may not be just due to Ag leakage. Moreover, mesendoderm-derived cell types, tissues and organs may be more prone to AgNP toxicity than ectoderm lineages.
科研通智能强力驱动
Strongly Powered by AbleSci AI