Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks

计算机科学 多元统计 图形 数据挖掘 时间序列 利用 人工智能 人工神经网络 理论计算机科学 机器学习 计算机安全
作者
Zonghan Wu,Shirui Pan,Guodong Long,Jing Jiang,Xiaojun Chang,Chengqi Zhang
出处
期刊:Knowledge Discovery and Data Mining 被引量:1025
标识
DOI:10.1145/3394486.3403118
摘要

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉祥高趙发布了新的文献求助10
2秒前
3秒前
小鱼完成签到,获得积分10
5秒前
明棋发布了新的文献求助10
6秒前
wy完成签到,获得积分10
7秒前
Steven发布了新的文献求助10
7秒前
小鱼发布了新的文献求助10
8秒前
LIUS给LIUS的求助进行了留言
10秒前
今后应助学术小白采纳,获得10
10秒前
机智的紫丝完成签到,获得积分10
11秒前
517完成签到 ,获得积分10
12秒前
不安的大白菜真实的钥匙完成签到,获得积分10
13秒前
王欣完成签到 ,获得积分10
14秒前
zyj完成签到,获得积分10
14秒前
15秒前
YG完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
苏航发布了新的文献求助10
21秒前
gh完成签到,获得积分10
22秒前
JULY发布了新的文献求助10
23秒前
23秒前
24秒前
25秒前
26秒前
yyt发布了新的文献求助10
28秒前
28秒前
TJW完成签到 ,获得积分10
29秒前
orixero应助wnan_07采纳,获得10
29秒前
Steven发布了新的文献求助10
30秒前
loulan完成签到,获得积分10
30秒前
吴兰田完成签到,获得积分10
30秒前
汉堡包应助Clarence采纳,获得10
32秒前
PsyQin完成签到,获得积分10
34秒前
34秒前
34秒前
Owen应助D_D采纳,获得10
35秒前
cqsjy完成签到,获得积分10
35秒前
老实易蓉发布了新的文献求助10
36秒前
彭于晏完成签到,获得积分10
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150