Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks

计算机科学 多元统计 图形 数据挖掘 时间序列 利用 人工智能 人工神经网络 理论计算机科学 机器学习 计算机安全
作者
Zonghan Wu,Shirui Pan,Guodong Long,Jing Jiang,Xiaojun Chang,Chengqi Zhang
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 753-763 被引量:1494
标识
DOI:10.1145/3394486.3403118
摘要

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丫丫发布了新的文献求助10
刚刚
刚刚
李健应助lan采纳,获得10
1秒前
生动项链发布了新的文献求助10
1秒前
1秒前
1秒前
CoCo完成签到,获得积分10
1秒前
桐桐应助LittleWang采纳,获得10
2秒前
斯文败类应助SYY采纳,获得10
2秒前
2秒前
大鱼完成签到,获得积分10
3秒前
longer发布了新的文献求助10
3秒前
sleep应助zzl采纳,获得20
3秒前
赵赵赵完成签到,获得积分20
4秒前
4秒前
会飞的鱼完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
6秒前
ewasxz发布了新的文献求助10
6秒前
juanjuan完成签到,获得积分10
7秒前
ding应助Moonpie采纳,获得10
7秒前
7秒前
万能图书馆应助Regina采纳,获得10
7秒前
8秒前
乐乐应助笑嘻嘻采纳,获得10
8秒前
叶子完成签到,获得积分10
8秒前
ohio关注了科研通微信公众号
8秒前
10秒前
大模型应助shenerqing采纳,获得10
10秒前
夏傥完成签到,获得积分10
11秒前
小迷糊发布了新的文献求助10
11秒前
11秒前
11秒前
odetta发布了新的文献求助10
12秒前
12秒前
Hello应助Keyl采纳,获得10
12秒前
安逸发布了新的文献求助10
12秒前
星河发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685