已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning methods to predict solubilities of rock samples

特征选择 支持向量机 偏最小二乘回归 人工智能 人工神经网络 多层感知器 线性回归 计算机科学 均方误差 机器学习 回归 极限学习机 模式识别(心理学) 数据挖掘 数学 统计
作者
Pál Péter Hanzelik,Szilveszter Gergely,C. Gaspar,László Győry
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:34 (2) 被引量:12
标识
DOI:10.1002/cem.3198
摘要

Abstract Interests in the use of chemometric and data science methods for laboratory techniques have grown rapidly over the last 10 years, for the reason that they are cheaper and faster than traditional analytical methods of material testing. This study uses 888 rock samples collected from the exploration and production (E&P) sector of the oil industry. Based on the Fourier‐transform infrared (FT‐IR) spectra of these rock samples their solubility predictions have been developed and investigated with nine methods including both linear and non‐linear ones. Two of these methods such as Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR) are available in a commercial software package and the other seven methods, Extreme Gradient Boosting (XGBoost), Ridge Regression (RR), k ‐nearest neighbours ( k ‐NN), Decision Tree (DT), Multilayer Perceptron (MLP), Support Vector Regression (SVR), Artificial Neural Network (ANN) with TensorFlow (TF), were coded by the authors based either on commercial applications or open source libraries. The investigation starts with spectral data pre‐processing carried out by standard normal variate (SNV), baseline correction and feature selection methods creating the feature set for all machine learning (ML) applications. The accuracy of predictions has been evaluated with mean squared error as a performance metric for each investigated method. The comparisons of predicted values to real data of test samples have shown that mineral solubility in acids can be well predicted in the range of the uncertainties of real laboratory measurements, therefore it can be used to improve the response time of these investigations and reduce the risk in industrial applications. In those cases, where the unknown samples have got some out of the range features, the limitations in the accuracy of predictions have become clear. We have also identified the limitations in the methodology and planned steps to further improve the prediction capabilities. The identified constraint of samples' multitude further emphasizes the need for database building efforts, so that the real potential in big data and machine learning can be realized.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
5秒前
饱满芷卉发布了新的文献求助20
7秒前
7秒前
7秒前
8秒前
上进生发布了新的文献求助10
10秒前
10秒前
俊逸芸遥发布了新的文献求助10
12秒前
AURORA发布了新的文献求助10
12秒前
bkagyin应助midoli采纳,获得10
13秒前
LK完成签到,获得积分10
15秒前
壹拾捌完成签到,获得积分10
15秒前
15秒前
wsh发布了新的文献求助10
16秒前
壹拾捌发布了新的文献求助10
17秒前
JamesPei应助huhu采纳,获得10
18秒前
18秒前
俊逸芸遥完成签到,获得积分10
19秒前
车念波发布了新的文献求助10
21秒前
英姑应助wsh采纳,获得10
21秒前
fys完成签到,获得积分20
21秒前
噔噔噔噔发布了新的文献求助10
21秒前
陈cxz发布了新的文献求助10
23秒前
科研小子666完成签到,获得积分10
23秒前
23秒前
星辰大海应助噔噔噔噔采纳,获得10
25秒前
www完成签到 ,获得积分20
26秒前
高槻泉完成签到,获得积分10
27秒前
酷波er应助欢呼妙彤采纳,获得10
27秒前
希望天下0贩的0应助nn采纳,获得10
27秒前
丘比特应助伤心的量子采纳,获得10
28秒前
www关注了科研通微信公众号
30秒前
31秒前
35秒前
36秒前
37秒前
39秒前
高槻泉发布了新的文献求助10
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248577
求助须知:如何正确求助?哪些是违规求助? 2892044
关于积分的说明 8269473
捐赠科研通 2560089
什么是DOI,文献DOI怎么找? 1388851
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798