Machine learning methods to predict solubilities of rock samples

特征选择 支持向量机 偏最小二乘回归 人工智能 人工神经网络 多层感知器 线性回归 计算机科学 均方误差 机器学习 回归 极限学习机 模式识别(心理学) 数据挖掘 数学 统计
作者
Pál Péter Hanzelik,Szilveszter Gergely,C. Gaspar,László Győry
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:34 (2) 被引量:12
标识
DOI:10.1002/cem.3198
摘要

Abstract Interests in the use of chemometric and data science methods for laboratory techniques have grown rapidly over the last 10 years, for the reason that they are cheaper and faster than traditional analytical methods of material testing. This study uses 888 rock samples collected from the exploration and production (E&P) sector of the oil industry. Based on the Fourier‐transform infrared (FT‐IR) spectra of these rock samples their solubility predictions have been developed and investigated with nine methods including both linear and non‐linear ones. Two of these methods such as Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR) are available in a commercial software package and the other seven methods, Extreme Gradient Boosting (XGBoost), Ridge Regression (RR), k ‐nearest neighbours ( k ‐NN), Decision Tree (DT), Multilayer Perceptron (MLP), Support Vector Regression (SVR), Artificial Neural Network (ANN) with TensorFlow (TF), were coded by the authors based either on commercial applications or open source libraries. The investigation starts with spectral data pre‐processing carried out by standard normal variate (SNV), baseline correction and feature selection methods creating the feature set for all machine learning (ML) applications. The accuracy of predictions has been evaluated with mean squared error as a performance metric for each investigated method. The comparisons of predicted values to real data of test samples have shown that mineral solubility in acids can be well predicted in the range of the uncertainties of real laboratory measurements, therefore it can be used to improve the response time of these investigations and reduce the risk in industrial applications. In those cases, where the unknown samples have got some out of the range features, the limitations in the accuracy of predictions have become clear. We have also identified the limitations in the methodology and planned steps to further improve the prediction capabilities. The identified constraint of samples' multitude further emphasizes the need for database building efforts, so that the real potential in big data and machine learning can be realized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安戈完成签到,获得积分10
刚刚
动听的笑南完成签到,获得积分10
刚刚
1秒前
1秒前
周运来发布了新的文献求助30
1秒前
面壁思过应助hhcai采纳,获得10
2秒前
自觉的向日葵完成签到,获得积分10
2秒前
木木发布了新的文献求助10
3秒前
4秒前
orixero应助木子采纳,获得10
6秒前
6秒前
热情凝云发布了新的文献求助10
7秒前
澡雪发布了新的文献求助10
7秒前
7秒前
8秒前
我爱看文献是假的完成签到,获得积分10
9秒前
9秒前
诚心的不斜完成签到,获得积分20
10秒前
lizzie关注了科研通微信公众号
10秒前
积极香菇完成签到,获得积分10
10秒前
11秒前
mmmm完成签到,获得积分20
11秒前
Cope发布了新的文献求助10
12秒前
啊啊发布了新的文献求助10
12秒前
桐桐应助华健采纳,获得10
13秒前
14秒前
英姑应助缓慢平蓝采纳,获得10
14秒前
14秒前
14秒前
汉堡包应助111采纳,获得10
15秒前
感动的念文关注了科研通微信公众号
16秒前
田様应助实验顺顺利利采纳,获得10
17秒前
替我活着发布了新的文献求助10
17秒前
18秒前
Orange应助晓巨人采纳,获得10
18秒前
159as8发布了新的文献求助10
19秒前
铜锈发布了新的文献求助10
19秒前
19秒前
细心依丝关注了科研通微信公众号
21秒前
Owen应助桑叶采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975755
求助须知:如何正确求助?哪些是违规求助? 3520108
关于积分的说明 11200829
捐赠科研通 3256492
什么是DOI,文献DOI怎么找? 1798298
邀请新用户注册赠送积分活动 877509
科研通“疑难数据库(出版商)”最低求助积分说明 806403