已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning methods to predict solubilities of rock samples

特征选择 支持向量机 偏最小二乘回归 人工智能 人工神经网络 多层感知器 线性回归 计算机科学 均方误差 机器学习 回归 极限学习机 模式识别(心理学) 数据挖掘 数学 统计
作者
Pál Péter Hanzelik,Szilveszter Gergely,C. Gaspar,László Győry
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:34 (2) 被引量:12
标识
DOI:10.1002/cem.3198
摘要

Abstract Interests in the use of chemometric and data science methods for laboratory techniques have grown rapidly over the last 10 years, for the reason that they are cheaper and faster than traditional analytical methods of material testing. This study uses 888 rock samples collected from the exploration and production (E&P) sector of the oil industry. Based on the Fourier‐transform infrared (FT‐IR) spectra of these rock samples their solubility predictions have been developed and investigated with nine methods including both linear and non‐linear ones. Two of these methods such as Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR) are available in a commercial software package and the other seven methods, Extreme Gradient Boosting (XGBoost), Ridge Regression (RR), k ‐nearest neighbours ( k ‐NN), Decision Tree (DT), Multilayer Perceptron (MLP), Support Vector Regression (SVR), Artificial Neural Network (ANN) with TensorFlow (TF), were coded by the authors based either on commercial applications or open source libraries. The investigation starts with spectral data pre‐processing carried out by standard normal variate (SNV), baseline correction and feature selection methods creating the feature set for all machine learning (ML) applications. The accuracy of predictions has been evaluated with mean squared error as a performance metric for each investigated method. The comparisons of predicted values to real data of test samples have shown that mineral solubility in acids can be well predicted in the range of the uncertainties of real laboratory measurements, therefore it can be used to improve the response time of these investigations and reduce the risk in industrial applications. In those cases, where the unknown samples have got some out of the range features, the limitations in the accuracy of predictions have become clear. We have also identified the limitations in the methodology and planned steps to further improve the prediction capabilities. The identified constraint of samples' multitude further emphasizes the need for database building efforts, so that the real potential in big data and machine learning can be realized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shiro发布了新的文献求助10
刚刚
lixioani219发布了新的文献求助10
1秒前
淡淡铃铛完成签到 ,获得积分10
2秒前
上官若男应助快乐树叶采纳,获得10
2秒前
2秒前
wobisheng完成签到,获得积分10
2秒前
2秒前
源源完成签到 ,获得积分10
2秒前
丘山发布了新的文献求助10
5秒前
笨笨人龙完成签到 ,获得积分10
5秒前
linwenfengcool完成签到,获得积分10
6秒前
6秒前
10秒前
Akim应助lixioani219采纳,获得10
10秒前
XXX发布了新的文献求助10
11秒前
深情安青应助冷酷电脑采纳,获得10
12秒前
shiro完成签到,获得积分10
14秒前
15秒前
16秒前
YY发布了新的文献求助10
16秒前
ttfakira完成签到,获得积分10
17秒前
揽月yue完成签到 ,获得积分10
18秒前
18秒前
19秒前
meitoumi发布了新的文献求助10
20秒前
22秒前
AAAA发布了新的文献求助10
22秒前
NexusExplorer应助oo采纳,获得10
23秒前
852应助YY采纳,获得10
23秒前
23秒前
小L同学关注了科研通微信公众号
25秒前
qqweisiweiqq发布了新的文献求助10
26秒前
兔子发布了新的文献求助10
27秒前
27秒前
YOLO发布了新的文献求助30
28秒前
31秒前
34秒前
爆米花应助meitoumi采纳,获得10
34秒前
马马发布了新的文献求助10
34秒前
oo发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062976
求助须知:如何正确求助?哪些是违规求助? 4286688
关于积分的说明 13357633
捐赠科研通 4104617
什么是DOI,文献DOI怎么找? 2247558
邀请新用户注册赠送积分活动 1253122
关于科研通互助平台的介绍 1184083