Machine learning methods to predict solubilities of rock samples

特征选择 支持向量机 偏最小二乘回归 人工智能 人工神经网络 多层感知器 线性回归 计算机科学 均方误差 机器学习 回归 极限学习机 模式识别(心理学) 数据挖掘 数学 统计
作者
Pál Péter Hanzelik,Szilveszter Gergely,C. Gaspar,László Győry
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:34 (2) 被引量:12
标识
DOI:10.1002/cem.3198
摘要

Abstract Interests in the use of chemometric and data science methods for laboratory techniques have grown rapidly over the last 10 years, for the reason that they are cheaper and faster than traditional analytical methods of material testing. This study uses 888 rock samples collected from the exploration and production (E&P) sector of the oil industry. Based on the Fourier‐transform infrared (FT‐IR) spectra of these rock samples their solubility predictions have been developed and investigated with nine methods including both linear and non‐linear ones. Two of these methods such as Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR) are available in a commercial software package and the other seven methods, Extreme Gradient Boosting (XGBoost), Ridge Regression (RR), k ‐nearest neighbours ( k ‐NN), Decision Tree (DT), Multilayer Perceptron (MLP), Support Vector Regression (SVR), Artificial Neural Network (ANN) with TensorFlow (TF), were coded by the authors based either on commercial applications or open source libraries. The investigation starts with spectral data pre‐processing carried out by standard normal variate (SNV), baseline correction and feature selection methods creating the feature set for all machine learning (ML) applications. The accuracy of predictions has been evaluated with mean squared error as a performance metric for each investigated method. The comparisons of predicted values to real data of test samples have shown that mineral solubility in acids can be well predicted in the range of the uncertainties of real laboratory measurements, therefore it can be used to improve the response time of these investigations and reduce the risk in industrial applications. In those cases, where the unknown samples have got some out of the range features, the limitations in the accuracy of predictions have become clear. We have also identified the limitations in the methodology and planned steps to further improve the prediction capabilities. The identified constraint of samples' multitude further emphasizes the need for database building efforts, so that the real potential in big data and machine learning can be realized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘怀蕊发布了新的文献求助10
刚刚
舒心赛凤发布了新的文献求助10
刚刚
文艺明杰完成签到,获得积分10
刚刚
1秒前
1秒前
wawuuuuu完成签到,获得积分10
1秒前
Akim应助谢家宝树采纳,获得10
1秒前
LU发布了新的文献求助10
1秒前
2秒前
pinging完成签到,获得积分10
2秒前
通~发布了新的文献求助10
3秒前
lai完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
隐形曼青应助彭彭采纳,获得10
5秒前
卡卡完成签到 ,获得积分10
5秒前
科目三应助季夏采纳,获得10
6秒前
6秒前
今后应助激动的一手采纳,获得10
6秒前
许中原完成签到,获得积分10
6秒前
无限的幻灵完成签到,获得积分10
6秒前
7秒前
整齐路灯完成签到,获得积分10
7秒前
紧张的梦岚应助跳跃乘风采纳,获得20
7秒前
简单水杯完成签到 ,获得积分10
7秒前
大胆的尔岚完成签到,获得积分10
8秒前
8秒前
Sene完成签到,获得积分10
8秒前
哈哈大笑发布了新的文献求助10
8秒前
叶飞荷发布了新的文献求助10
9秒前
9秒前
竹筏过海应助嘎啦嘎嘎啦采纳,获得40
9秒前
9秒前
123456完成签到 ,获得积分10
10秒前
10秒前
11秒前
乐乐乐乐乐完成签到,获得积分10
11秒前
Q.curiosity完成签到,获得积分10
12秒前
丘比特应助我行我素采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762