清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning methods to predict solubilities of rock samples

特征选择 支持向量机 偏最小二乘回归 人工智能 人工神经网络 多层感知器 线性回归 计算机科学 均方误差 机器学习 回归 极限学习机 模式识别(心理学) 数据挖掘 数学 统计
作者
Pál Péter Hanzelik,Szilveszter Gergely,C. Gaspar,László Győry
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:34 (2) 被引量:12
标识
DOI:10.1002/cem.3198
摘要

Abstract Interests in the use of chemometric and data science methods for laboratory techniques have grown rapidly over the last 10 years, for the reason that they are cheaper and faster than traditional analytical methods of material testing. This study uses 888 rock samples collected from the exploration and production (E&P) sector of the oil industry. Based on the Fourier‐transform infrared (FT‐IR) spectra of these rock samples their solubility predictions have been developed and investigated with nine methods including both linear and non‐linear ones. Two of these methods such as Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR) are available in a commercial software package and the other seven methods, Extreme Gradient Boosting (XGBoost), Ridge Regression (RR), k ‐nearest neighbours ( k ‐NN), Decision Tree (DT), Multilayer Perceptron (MLP), Support Vector Regression (SVR), Artificial Neural Network (ANN) with TensorFlow (TF), were coded by the authors based either on commercial applications or open source libraries. The investigation starts with spectral data pre‐processing carried out by standard normal variate (SNV), baseline correction and feature selection methods creating the feature set for all machine learning (ML) applications. The accuracy of predictions has been evaluated with mean squared error as a performance metric for each investigated method. The comparisons of predicted values to real data of test samples have shown that mineral solubility in acids can be well predicted in the range of the uncertainties of real laboratory measurements, therefore it can be used to improve the response time of these investigations and reduce the risk in industrial applications. In those cases, where the unknown samples have got some out of the range features, the limitations in the accuracy of predictions have become clear. We have also identified the limitations in the methodology and planned steps to further improve the prediction capabilities. The identified constraint of samples' multitude further emphasizes the need for database building efforts, so that the real potential in big data and machine learning can be realized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
24秒前
英俊的铭应助和谐乌龟采纳,获得10
31秒前
负责以山完成签到 ,获得积分10
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
Akim应助Demi_Ming采纳,获得10
1分钟前
1分钟前
sunshine完成签到 ,获得积分10
1分钟前
美满的冬卉完成签到 ,获得积分10
1分钟前
Axs完成签到,获得积分10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
megumin完成签到,获得积分10
2分钟前
TEY完成签到 ,获得积分10
2分钟前
jiangqin123完成签到 ,获得积分10
2分钟前
菠萝包完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Demi_Ming发布了新的文献求助10
3分钟前
winne完成签到,获得积分10
3分钟前
3分钟前
wanci应助李小猫采纳,获得10
3分钟前
山楂完成签到,获得积分10
3分钟前
3分钟前
3分钟前
和谐乌龟发布了新的文献求助10
3分钟前
和谐乌龟完成签到,获得积分10
3分钟前
ttyhtg完成签到,获得积分10
3分钟前
3分钟前
bkagyin应助萧萧采纳,获得10
3分钟前
阿巴完成签到 ,获得积分10
3分钟前
李小猫发布了新的文献求助10
3分钟前
Hello应助科研通管家采纳,获得10
4分钟前
drhwang完成签到,获得积分10
4分钟前
研究生完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513318
关于积分的说明 11167297
捐赠科研通 3248697
什么是DOI,文献DOI怎么找? 1794414
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804652