Two novel online nomograms for predicting the survival of individual patients undergoing partial hepatectomy for huge hepatocellular carcinoma.

医学 列线图 肝细胞癌 肝切除术 内科学 预测模型 肿瘤科 接收机工作特性 胃肠病学
作者
Zixiang Chen,Ming Cai,Xu Wang,Yi Zhou,Jiangming Chen,Qing-song Xie,Yi-jun Zhao,Kun Xie,Qiang Fang,Tian Pu,Dong Jiang,Tao Bai,Jinliang Ma,Xiaoping Geng,Fu-bao Liu
出处
期刊:Hpb [Elsevier BV]
卷期号:23 (8): 1217-1229
标识
DOI:10.1016/j.hpb.2020.12.002
摘要

Abstract Background A method for predicting prognosis of patients who undergo partial hepatectomy for huge hepatocellular carcinoma (HHCC, diameter ≥10 cm) is currently lacking. This study aimed to establish two online nomograms to predict the overall survival (OS) and disease-free survival (DFS) for patients undergoing resection for HHCC. Methods The clinicopathologic characteristics and follow-up information of patients who underwent partial hepatectomy for HHCC at two medical centers were reviewed. Using a training cohort, a Cox model was used to identify the predictors of survival. Two dynamic nomograms for OS and DFS were developed and validated based on the data. Results Eight and nine independent factors derived from the multivariate analysis of the training cohort were screened and incorporated into the nomograms for OS and DFS, respectively. In the training cohort, the nomogram achieved concordance indices (C-indices) of 0.745 and 0.738 in predicting the OS and DFS, respectively. These results were supported by external validation (C-indices: 0.822 for OS and 0.827 for DFS). Further, the calibration curves of the endpoints showed a favorable agreement between the nomograms’ assessments and actual observations. Conclusions The two web-based nomograms demonstrated optimal predictive performance for patients undergoing partial hepatectomy for HHCC. This provides a practical method for a personalized prognosis based on an individual's underlying risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Coffee完成签到 ,获得积分10
刚刚
nicaicai完成签到,获得积分10
刚刚
沈随便发布了新的文献求助10
刚刚
1秒前
1秒前
kinghao发布了新的文献求助10
2秒前
qiqi1111发布了新的文献求助10
2秒前
xcp完成签到,获得积分10
2秒前
科目三应助Suzzne采纳,获得10
3秒前
4秒前
213完成签到 ,获得积分20
4秒前
咸鱼完成签到,获得积分10
4秒前
云哈哈完成签到,获得积分10
4秒前
Yang发布了新的文献求助10
4秒前
不再褪色完成签到,获得积分10
5秒前
213关注了科研通微信公众号
6秒前
震动的涵瑶关注了科研通微信公众号
7秒前
yzx完成签到,获得积分20
9秒前
称心寒松发布了新的文献求助10
9秒前
cldg发布了新的文献求助10
10秒前
11秒前
11秒前
13秒前
Grayball完成签到,获得积分0
14秒前
Wang0102完成签到,获得积分10
14秒前
14秒前
小二郎应助温婉的香菇采纳,获得10
15秒前
香蕉觅云应助黄昏采纳,获得10
15秒前
长安完成签到,获得积分10
16秒前
科研通AI5应助Raiden采纳,获得20
17秒前
monned完成签到 ,获得积分10
17秒前
meimei发布了新的文献求助10
17秒前
ysl完成签到,获得积分10
18秒前
qingfeng发布了新的文献求助10
18秒前
lii发布了新的文献求助10
18秒前
动漫大师发布了新的文献求助10
18秒前
19秒前
SciGPT应助yyyzzz采纳,获得30
20秒前
ZJD完成签到,获得积分10
20秒前
Lucas应助wakao采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442