稳健性(进化)
计算机科学
线性规划
非周期图
数学优化
随机规划
稳健优化
算法
数学
生物化学
化学
组合数学
基因
作者
Christian Liebchen,Marco E. Lübbecke,Rolf H. Möhring,Sebastian Stiller
标识
DOI:10.1007/978-3-642-05465-5_1
摘要
We present a new concept for optimization under uncertainty: recoverable robustness. A solution is recovery robust if it can be recovered by limited means in all likely scenarios. Specializing the general concept to linear programming we can show that recoverable robustness combines the flexibility of stochastic programming with the tractability and performances guarantee of the classical robust approach. We exemplify recoverable robustness in delay resistant, periodic and aperiodic timetabling problems, and train platforming.
科研通智能强力驱动
Strongly Powered by AbleSci AI