A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer

列线图 医学 无线电技术 膀胱癌 置信区间 放射科 逻辑回归 淋巴结 转移 肿瘤科 内科学 癌症
作者
Shaoxu Wu,Junjiong Zheng,Yong Li,Hao Yu,Siya Shi,Weibin Xie,Hao Liu,Yangfan Su,Jian Huang,Tianxin Lin
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:23 (22): 6904-6911 被引量:340
标识
DOI:10.1158/1078-0432.ccr-17-1510
摘要

Purpose: To develop and validate a radiomics nomogram for the preoperative prediction of lymph node (LN) metastasis in bladder cancer.Experimental Design: A total of 118 eligible bladder cancer patients were divided into a training set (n = 80) and a validation set (n = 38). Radiomics features were extracted from arterial-phase CT images of each patient. A radiomics signature was then constructed with the least absolute shrinkage and selection operator algorithm in the training set. Combined with independent risk factors, a radiomics nomogram was built with a multivariate logistic regression model. Nomogram performance was assessed in the training set and validated in the validation set. Finally, decision curve analysis was performed with the combined training and validation set to estimate the clinical usefulness of the nomogram.Results: The radiomics signature, consisting of nine LN status-related features, achieved favorable prediction efficacy. The radiomics nomogram, which incorporated the radiomics signature and CT-reported LN status, also showed good calibration and discrimination in the training set [AUC, 0.9262; 95% confidence interval (CI), 0.8657-0.9868] and the validation set (AUC, 0.8986; 95% CI, 0.7613-0.9901). The decision curve indicated the clinical usefulness of our nomogram. Encouragingly, the nomogram also showed favorable discriminatory ability in the CT-reported LN-negative (cN0) subgroup (AUC, 0.8810; 95% CI, 0.8021-0.9598).Conclusions: The presented radiomics nomogram, a noninvasive preoperative prediction tool that incorporates the radiomics signature and CT-reported LN status, shows favorable predictive accuracy for LN metastasis in patients with bladder cancer. Multicenter validation is needed to acquire high-level evidence for its clinical application. Clin Cancer Res; 23(22); 6904-11. ©2017 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
墨闲君发布了新的文献求助10
1秒前
SYY发布了新的文献求助10
1秒前
1秒前
小瓶子关注了科研通微信公众号
2秒前
所所应助程瑞哲采纳,获得10
3秒前
Artorias发布了新的文献求助10
3秒前
4秒前
大芹菜完成签到,获得积分20
5秒前
寒冷的迎南完成签到,获得积分10
5秒前
冷艳的冬萱完成签到,获得积分10
5秒前
赘婿应助呆瓜采纳,获得10
6秒前
cailun发布了新的文献求助10
6秒前
榛子酱发布了新的文献求助10
6秒前
脑洞疼应助保安采纳,获得30
6秒前
7秒前
失眠乐双发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
Akim应助帅气的夏天采纳,获得10
10秒前
11秒前
SciGPT应助单薄新烟采纳,获得10
12秒前
keke发布了新的文献求助10
12秒前
一一完成签到,获得积分10
12秒前
Fengtaisheng完成签到,获得积分10
13秒前
哈哈哈哈发布了新的文献求助10
14秒前
cc20231022发布了新的文献求助10
14秒前
Jade发布了新的文献求助10
14秒前
zhaozhao完成签到,获得积分10
14秒前
小瓶子发布了新的文献求助10
14秒前
耍酷的世平完成签到,获得积分10
14秒前
14秒前
Artorias发布了新的文献求助10
15秒前
fafa完成签到 ,获得积分10
15秒前
潮鸣完成签到 ,获得积分10
16秒前
zyc1111111完成签到,获得积分10
16秒前
失眠乐双完成签到,获得积分10
17秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570