A Feature Subset Evaluation Method Based on Multi-objective Optimization

特征选择 计算机科学 模式识别(心理学) 特征(语言学) 分类器(UML) 特征向量 人工智能 数据挖掘 理论(学习稳定性) 机器学习 语言学 哲学
作者
Mengmeng Li,Zhigang Shang,Caitong Yue
出处
期刊:Lecture Notes in Computer Science 卷期号:: 581-590 被引量:2
标识
DOI:10.1007/978-3-319-68759-9_47
摘要

To remove the irrelevant and redundant features from the high-dimensional data while ensuring classification accuracy, a supervised feature subset evaluation method based on multi-objective optimization has been proposed in this paper. Four aspects, sparsity of feature space, classification accuracy, information loss degree and feature subset stability, were took into account in the proposed method and the Multi-objective functions were constructed. Then the popular NSGA-II algorithm was used for optimization of the four objectives in the feature selection process. Finally the feature subset was selected based on the obtained feature weight vector according the four evaluation criteria. The proposed method was tested on 4 standard data sets using two kinds of classifier. The experiment results show that the proposed method can guarantee the higher classification accuracy even though only few numbers of features selected than the other methods. On the other hand, the information loss degrees of the proposed method are the lowest which demonstrates that the selected feature subsets of the proposed method can represent the original data sets best.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助20
1秒前
vviiiii完成签到,获得积分10
1秒前
阿玺完成签到,获得积分10
2秒前
2秒前
xiaoyou完成签到,获得积分10
2秒前
Ha完成签到,获得积分10
2秒前
枕月听松完成签到,获得积分10
4秒前
6秒前
6秒前
7秒前
xwx完成签到,获得积分10
8秒前
KJ完成签到,获得积分10
9秒前
冰阔罗发布了新的文献求助10
11秒前
学术混子发布了新的文献求助10
11秒前
wzbc完成签到,获得积分10
11秒前
嬛嬛完成签到,获得积分20
12秒前
XIAOLAN发布了新的文献求助30
12秒前
yuyiyi完成签到,获得积分10
12秒前
12秒前
kk应助沈呆呆采纳,获得50
12秒前
Kevin完成签到,获得积分10
12秒前
虚心沂完成签到,获得积分10
12秒前
ssk完成签到,获得积分10
13秒前
zhouleibio完成签到,获得积分10
14秒前
冯乌完成签到 ,获得积分10
15秒前
L7.完成签到,获得积分10
16秒前
16秒前
陈好好完成签到 ,获得积分10
16秒前
西溪浅浅完成签到 ,获得积分10
16秒前
Karvs完成签到,获得积分10
18秒前
自然的夏兰完成签到 ,获得积分10
18秒前
阿巴阿巴完成签到,获得积分10
19秒前
顺心紫南完成签到,获得积分10
19秒前
20秒前
21秒前
量子星尘发布了新的文献求助50
21秒前
22秒前
AllRightReserved完成签到 ,获得积分10
22秒前
www完成签到,获得积分20
22秒前
ark861023完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613581
求助须知:如何正确求助?哪些是违规求助? 4018192
关于积分的说明 12437368
捐赠科研通 3700791
什么是DOI,文献DOI怎么找? 2040931
邀请新用户注册赠送积分活动 1073664
科研通“疑难数据库(出版商)”最低求助积分说明 957328