Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li7La3Zr2O12 (LLZO)

晶界 扩散 晶界扩散系数 电解质 材料科学 电导率 离子电导率 离子 化学物理 快离子导体 微晶 氧化物 有效扩散系数 分析化学(期刊) 凝聚态物理 化学 热力学 物理化学 微观结构 电极 冶金 物理 有机化学 色谱法 医学 放射科 磁共振成像
作者
Seungho Yu,Donald J. Siegel
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:29 (22): 9639-9647 被引量:235
标识
DOI:10.1021/acs.chemmater.7b02805
摘要

The oxide with nominal composition Li7La3Zr2O12 (LLZO) is a promising solid electrolyte thanks to its high (bulk) Li-ion conductivity, negligible electronic transport, chemical stability against Li metal, and wide electrochemical window. Despite these promising characteristics, recent measurements suggest that microstructural features, specifically, grain boundaries (GBs), contribute to undesirable short-circuiting and resistance in polycrystalline LLZO membranes. Toward the goal of understanding GB-related phenomena, the present study characterizes the energetics, composition, and transport properties of three low-energy (Σ3 and Σ5) symmetric tilt GBs in LLZO at the atomic scale. Monte Carlo simulations reveal that the GB planes are enriched with Li, and to a lesser extent with oxygen. Molecular dynamics simulations on these off-stoichiometric boundaries were used to assess Li-ion transport within and across the boundary planes. We find that Li transport is generally reduced in the GB region; however, the magnitude of this effect is sensitive to temperature and GB structure. Li-ion diffusion is comparable in all three GBs at the high temperatures encountered during processing, and only 2–3 times slower than bulk diffusion. These similarities vanish at room temperature, where diffusion in the more compact Σ3 boundary remains relatively fast (half the bulk rate), while transport in the Σ5 boundaries is roughly 2 orders of magnitude slower. These trends mirror the activation energies for diffusion, which in the Σ5 boundaries are up to 35% larger than in bulk LLZO, and are identical to the bulk in the Σ3 boundary. Diffusion within the Σ5 boundaries is observed to be isotropic. In contrast, intraplane diffusion in the Σ3 boundary plane at room temperature is predicted to exceed that of the bulk, while transboundary diffusion is ∼200 times slower than that in the bulk. Our observation of mixed GB transport contributions (some boundaries support fast diffusion, while others are slow) is consistent with the limited GB resistance observed in polycrystalline LLZO samples processed at high temperatures. These data also suggest that higher-energy GBs with less-compact structures should penalize Li-ion conductivity to a greater degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟博士发布了新的文献求助10
1秒前
xinL完成签到,获得积分10
2秒前
sum完成签到 ,获得积分20
3秒前
KevinSun完成签到,获得积分10
3秒前
lemon完成签到,获得积分10
3秒前
科研民工完成签到,获得积分10
6秒前
liujianxin完成签到,获得积分20
7秒前
开朗若之完成签到 ,获得积分10
7秒前
郑成灿完成签到 ,获得积分10
8秒前
无一完成签到 ,获得积分0
8秒前
wuli林完成签到,获得积分10
9秒前
文献求助完成签到,获得积分10
9秒前
哦哦完成签到,获得积分10
12秒前
浮游应助carbonhan采纳,获得10
13秒前
ataybabdallah完成签到,获得积分10
13秒前
轻松的鸿煊完成签到 ,获得积分10
14秒前
踏实的盼秋完成签到 ,获得积分10
15秒前
15秒前
朱妮妮完成签到,获得积分10
16秒前
小包子完成签到,获得积分10
17秒前
兴奋路人完成签到,获得积分10
18秒前
18秒前
CX330发布了新的文献求助30
19秒前
清修发布了新的文献求助10
20秒前
Ali完成签到,获得积分10
20秒前
HuiJN完成签到 ,获得积分10
20秒前
半生完成签到 ,获得积分10
22秒前
刘汉淼完成签到,获得积分10
24秒前
安心完成签到 ,获得积分10
25秒前
行舟完成签到,获得积分10
25秒前
清新的易真完成签到,获得积分10
25秒前
莫等闲完成签到,获得积分10
25秒前
i羽翼深蓝i完成签到,获得积分10
26秒前
carbonhan完成签到,获得积分10
26秒前
可靠雅青完成签到 ,获得积分10
26秒前
YangSY完成签到,获得积分10
27秒前
wyt完成签到,获得积分20
28秒前
Leo完成签到,获得积分10
28秒前
cccr完成签到 ,获得积分10
28秒前
29秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347734
求助须知:如何正确求助?哪些是违规求助? 4482003
关于积分的说明 13948481
捐赠科研通 4380368
什么是DOI,文献DOI怎么找? 2406916
邀请新用户注册赠送积分活动 1399501
关于科研通互助平台的介绍 1372698