An Adaptive Heading Correction Algorithm for Suppressing Magnetic Interference in Inertial Navigation System

航向(导航) 干扰(通信) 惯性导航系统 计算机科学 惯性参考系 控制理论(社会学) 算法 工程类 物理 人工智能 电信 航空航天工程 频道(广播) 控制(管理) 量子力学
作者
Miaoxin Ji,Xiangbo Xu,Yuyang Guo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-10 被引量:16
标识
DOI:10.1109/tim.2021.3112004
摘要

The pedestrian navigation system using inertial and magnetic sensors can determine the pedestrian's attitude and position. However, magnetic field measurement is affected by external magnetic interference, which leads to heading error. Therefore, it is of great importance to suppress the magnetic interference. The magnetic threshold method is often used to detect the magnetic interference. However, this method fails under the weak magnetic interference environment because the magnetic field intensity measurement is approximately equal to that of the geomagnetic intensity. A generalized likelihood ratio test (GLRT) is proposed in this study. A likelihood ratio function is constructed to maximize the phase probability of magnetic interference, so that the inequality relation for detection can be determined. In addition, zero velocity update algorithm (ZUPT) including Extended Kalman Filter (EKF) or Extended Kalman Particle Filter (EKPF) can suppress accumulated errors, but the heading deviation cannot be accurately estimated. Therefore, an improved EKPF is designed to compensate the heading observation by adding adaptive parameters. In order to verify the advantages of the proposed method, the pedestrian navigation system is established and experiments are performed. The false detection rate of the proposed GLRT method decreased by 14.36% compared with the conventional method. Furthermore, the positioning error is reduced by improved EKPF, compared with EKF and EKPF. Therefore, the methods proposed in this study improve the heading and positioning accuracy under magnetic interference environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助小小采纳,获得10
1秒前
ceeray23应助傻瓜子采纳,获得10
1秒前
鳗鱼英豪完成签到,获得积分10
2秒前
苹果紫萱完成签到,获得积分10
3秒前
优秀如雪发布了新的文献求助10
5秒前
5秒前
赘婿应助优美葵阴采纳,获得10
6秒前
cdercder应助谨慎的睫毛膏采纳,获得30
6秒前
6秒前
qweqwe完成签到,获得积分10
7秒前
lee完成签到,获得积分10
8秒前
简单的笑蓝完成签到 ,获得积分10
9秒前
9秒前
洁仔发布了新的文献求助10
9秒前
gaiaaxy完成签到,获得积分20
10秒前
11秒前
王予曦完成签到,获得积分10
12秒前
科研通AI2S应助俊逸凌雪采纳,获得10
12秒前
13秒前
13秒前
云鹤完成签到 ,获得积分10
14秒前
14秒前
大佬发布了新的文献求助10
17秒前
逝水无痕发布了新的文献求助10
17秒前
17秒前
唠叨的曼雁发布了新的文献求助100
19秒前
20秒前
优秀如雪完成签到,获得积分20
22秒前
韩芸姣发布了新的文献求助10
23秒前
优美葵阴完成签到,获得积分20
25秒前
调研昵称发布了新的文献求助10
26秒前
子车茗应助称心的胡萝卜采纳,获得10
27秒前
28秒前
饭团0814完成签到,获得积分10
29秒前
勤劳锦程完成签到 ,获得积分10
29秒前
谨慎的睫毛膏完成签到,获得积分20
30秒前
王秋婷发布了新的文献求助10
31秒前
脑洞疼应助FAY采纳,获得10
32秒前
优美葵阴发布了新的文献求助10
32秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605