Botanical drugs: a new strategy for structure-based target prediction

药物数据库 计算生物学 配体(生物化学) 对接(动物) 药物发现 蛋白质数据库 化学 蛋白质配体 小分子 药品 立体化学 生物 医学 生物化学 药理学 受体 护理部
作者
Xuxu Wei,Xiang Wu,Zeyu Cheng,Qingming Wu,Chen Cao,Xiangxin Xue,Hongcai Shang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:6
标识
DOI:10.1093/bib/bbab425
摘要

Target identification of small molecules is an important and still changeling work in the area of drug discovery, especially for botanical drug development. Indistinct understanding of the relationships of ligand-protein interactions is one of the main obstacles for drug repurposing and identification of off-targets. In this study, we collected 9063 crystal structures of ligand-binding proteins released from January, 1995 to April, 2021 in PDB bank, and split the complexes into 5133 interaction pairs of ligand atoms and protein fragments (covalently linked three heavy atoms) with interatomic distance ≤5 Å. The interaction pairs were grouped into ligand atoms with the same SYBYL atom type surrounding each type of protein fragment, which were further clustered via Bayesian Gaussian Mixture Model (BGMM). Gaussian distributions with ligand atoms ≥20 were identified as significant interaction patterns. Reliability of the significant interaction patterns was validated by comparing the difference of number of significant interaction patterns between the docked poses with higher and lower similarity to the native crystal structures. Fifty-one candidate targets of brucine, strychnine and icajine involved in Semen Strychni (Mǎ Qián Zǐ) and eight candidate targets of astragaloside-IV, formononetin and calycosin-7-glucoside involved in Astragalus (Huáng Qí) were predicted by the significant interaction patterns, in combination with docking, which were consistent with the therapeutic effects of Semen Strychni and Astragalus for cancer and chronic pain. The new strategy in this study improves the accuracy of target identification for small molecules, which will facilitate discovery of botanical drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goofs完成签到,获得积分0
1秒前
2秒前
2秒前
科研通AI5应助Zzzzan采纳,获得10
3秒前
纯真的德地完成签到,获得积分10
4秒前
4秒前
易安完成签到,获得积分10
4秒前
pfuhh发布了新的文献求助10
6秒前
6秒前
研友_LBKR9n发布了新的文献求助10
6秒前
韶卿完成签到,获得积分10
8秒前
phuocnlh完成签到,获得积分10
8秒前
9秒前
12秒前
DRHCE发布了新的文献求助20
12秒前
泥花完成签到,获得积分10
13秒前
13秒前
研友_Lw4Ngn完成签到,获得积分10
13秒前
cxr完成签到,获得积分10
14秒前
14秒前
。。。完成签到,获得积分20
15秒前
不吃不吃卷心菜关注了科研通微信公众号
17秒前
吃饭必加葱完成签到 ,获得积分10
17秒前
橘子完成签到 ,获得积分10
17秒前
挽倾颜发布了新的文献求助10
19秒前
19秒前
19秒前
彭于晏应助J11采纳,获得10
20秒前
美丽晓蓝发布了新的文献求助10
20秒前
lzz完成签到,获得积分10
21秒前
于水清发布了新的文献求助10
24秒前
25秒前
慕青应助川ccc采纳,获得10
26秒前
27秒前
JamesPei应助健壮的芷容采纳,获得10
28秒前
29秒前
29秒前
科研通AI5应助XX采纳,获得10
29秒前
30秒前
七月发布了新的文献求助10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792