Research on intelligent damage detection of far-sea cage based on machine vision and deep learning

笼子 人工智能 计算机科学 海洋工程 水下 遥控水下航行器 平滑的 计算机视觉 模拟 实时计算 工程类 结构工程 地质学 机器人 移动机器人 海洋学
作者
Wen-Xuan Liao,Shubin Zhang,Yinghao Wu,Dong An,Yaoguang Wei
出处
期刊:Aquacultural Engineering [Elsevier]
卷期号:96: 102219-102219 被引量:17
标识
DOI:10.1016/j.aquaeng.2021.102219
摘要

Far-sea cage is an essential way for aquaculture. In the process of far-sea cage aquaculture, the damage of net structure can cause severe economic property losses to farmers, so it is necessary to check the cage's integrity. At present, the typical way to inspect cages is to hire professional divers for manual inspection. This type of inspection is time-consuming and has security concerns. This paper proposes a method for detecting the damage of a far-sea cage based on machine vision and deep learning, which can detect the structure of a far-sea cage in real time and accurately detect the damaged area of the cage. Firstly, the cage image data were collected by autonomous cruising ROV. According to the characteristics of the captured images, an improved multi-scale fusion algorithm was proposed to better the performance of denoising and smoothing effect of the original method. Secondly, we use the MobileNet-SSD and key-frame extraction detection method to detect the damage of underwater cage video. The MobileNet-SSD model has been optimized in model size and detection speed compared with the SSD model. In the experiment, the simulated damaged images of the far-sea cage were used for testing. The experimental results have shown that the scheme can improve the efficiency of far-sea cage inspection and accurately detect the damaged areas in the cage in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
金阿垚在科研应助yahaha采纳,获得10
刚刚
小冉完成签到,获得积分10
刚刚
深情夏彤完成签到,获得积分10
刚刚
后知后觉发布了新的文献求助10
2秒前
整齐泥猴桃完成签到,获得积分10
2秒前
xiaoxiaomi应助舒涵采纳,获得30
2秒前
情怀应助JERRY采纳,获得10
2秒前
Hungrylunch应助CHL5722采纳,获得20
2秒前
liucong046完成签到,获得积分10
2秒前
2秒前
CodeCraft应助科研cc采纳,获得10
2秒前
3秒前
云里完成签到,获得积分10
3秒前
谦让傲菡完成签到 ,获得积分10
3秒前
小汪完成签到,获得积分10
3秒前
4秒前
qyhl完成签到,获得积分10
4秒前
xwc完成签到,获得积分10
4秒前
Booiys完成签到,获得积分10
5秒前
5秒前
852应助xqwwqx采纳,获得10
5秒前
5秒前
6秒前
HEIKU举报饱饱的芋头求助涉嫌违规
6秒前
相信相信的力量完成签到,获得积分10
6秒前
海风发布了新的文献求助10
6秒前
7秒前
赘婿应助小冉采纳,获得10
7秒前
科研通AI5应助杨杨杨采纳,获得10
7秒前
烫睫毛完成签到 ,获得积分10
7秒前
xiaoming发布了新的文献求助10
7秒前
思源应助吴五五采纳,获得10
8秒前
加拿大一枝黄花完成签到,获得积分10
8秒前
EunolusZ完成签到,获得积分10
8秒前
8秒前
成就莞完成签到,获得积分10
8秒前
Ww完成签到,获得积分10
9秒前
yaoyao发布了新的文献求助10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672