亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

From Synthetic to Real: Unsupervised Domain Adaptation for Animal Pose Estimation

过度拟合 计算机科学 人工智能 合成数据 边距(机器学习) 域适应 机器学习 一般化 领域(数学分析) 标记数据 一致性(知识库) 编码(集合论) 数据挖掘 人工神经网络 数学 数学分析 集合(抽象数据类型) 程序设计语言 分类器(UML)
作者
Chen Li,Gim Hee Lee
标识
DOI:10.1109/cvpr46437.2021.00153
摘要

Animal pose estimation is an important field that has received increasing attention in the recent years. The main challenge for this task is the lack of labeled data. Existing works circumvent this problem with pseudo labels generated from data of other easily accessible domains such as synthetic data. However, these pseudo labels are noisy even with consistency check or confidence-based filtering due to the domain shift in the data. To solve this problem, we design a multi-scale domain adaptation module (MDAM) to reduce the domain gap between the synthetic and real data. We further introduce an online coarse-to-fine pseudo label updating strategy. Specifically, we propose a self-distillation module in an inner coarse-update loop and a mean-teacher in an outer fine-update loop to generate new pseudo labels that gradually replace the old ones. Consequently, our model is able to learn from the old pseudo labels at the early stage, and gradually switch to the new pseudo labels to prevent overfitting in the later stage. We evaluate our approach on the TigDog and VisDA 2019 datasets, where we outperform existing approaches by a large margin. We also demonstrate the generalization ability of our model by testing extensively on both unseen domains and unseen animal categories. Our code is available at the project website 1 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助懒回顾采纳,获得10
1秒前
郭郭完成签到 ,获得积分10
2秒前
饼饼大王完成签到,获得积分10
2秒前
pliliyi发布了新的文献求助50
2秒前
2秒前
观澜发布了新的文献求助10
4秒前
谷雨发布了新的文献求助10
7秒前
王波完成签到 ,获得积分10
9秒前
RE完成签到 ,获得积分10
10秒前
11秒前
11秒前
15秒前
16秒前
16秒前
星辰大海应助121231233采纳,获得10
17秒前
20秒前
王哈哈发布了新的文献求助10
20秒前
谢小强发布了新的文献求助10
24秒前
科研q完成签到 ,获得积分10
26秒前
王哈哈完成签到,获得积分10
32秒前
满意的又蓝完成签到,获得积分10
36秒前
38秒前
38秒前
41秒前
雨田发布了新的文献求助10
43秒前
共享精神应助小线团黑桃采纳,获得10
44秒前
47秒前
50秒前
121231233发布了新的文献求助10
53秒前
54秒前
哎哟完成签到,获得积分10
55秒前
张笑圣发布了新的文献求助10
58秒前
年少丶完成签到,获得积分10
1分钟前
满意的柏柳完成签到 ,获得积分10
1分钟前
田様应助lhyxz采纳,获得10
1分钟前
科yt完成签到,获得积分10
1分钟前
嘟嘟雯完成签到 ,获得积分10
1分钟前
科研修沟完成签到 ,获得积分10
1分钟前
张笑圣发布了新的文献求助10
1分钟前
Asteria发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606532
求助须知:如何正确求助?哪些是违规求助? 4690912
关于积分的说明 14866603
捐赠科研通 4706434
什么是DOI,文献DOI怎么找? 2542743
邀请新用户注册赠送积分活动 1508159
关于科研通互助平台的介绍 1472276