A novel method of multiaxial fatigue life prediction based on deep learning

外推法 低周疲劳 深度学习 结构工程 压力(语言学) 人工神经网络 人工智能 抽象 计算机科学 系列(地层学) 机器学习 工程类 数学 统计 地质学 认识论 哲学 古生物学 语言学
作者
Jingye Yang,Guozheng Kang,Yujie Liu,Qianhua Kan
出处
期刊:International Journal of Fatigue [Elsevier BV]
卷期号:151: 106356-106356 被引量:112
标识
DOI:10.1016/j.ijfatigue.2021.106356
摘要

It is well-known that conventional multiaxial fatigue life prediction models are generally limited to specific materials and loading conditions. To remove this limitation, a novel attempt is proposed in this work based on the deep learning (i.e., an improvement of artificial neural network in machine learning approaches, which is powerful to learn representations of data with multiple levels of abstraction). To comprehensively evaluate the prediction capability of proposed deep learning-based method, six series of existing fatigue data of different materials are, respectively, analyzed, in which the main loading conditions concerned in the low-cycle and high-cycle fatigue researches are included, such as loading modes (stress-controlled/strain-controlled modes), loading levels (stress/strain amplitude and mean stress/strain), and loading paths (uniaxial/multiaxial and proportional/non-proportional paths), as well as for low-cycle and high-cycle fatigue regimes. Comparison of the predicted and experimental results shows that: all the loading conditions mentioned above can be handled satisfactorily by the proposed deep learning-based method; excellent prediction accuracy is achieved, and the predicted lives in each study case fall almost within the scatter band of 1.5 times. In addition, four groups of specifically designed data are used to evaluate the extrapolation capability of the proposed method, and the results show that the extrapolation capability gets weaker if the distinctions between the loading paths involved in the training dataset and test one increase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好滴捏发布了新的文献求助10
3秒前
000发布了新的文献求助10
3秒前
5秒前
刘丽梅完成签到 ,获得积分10
11秒前
勤恳的从波关注了科研通微信公众号
11秒前
顾矜应助好滴捏采纳,获得10
12秒前
彭于晏应助好滴捏采纳,获得10
12秒前
13秒前
14秒前
汉堡包应助165410203读书周采纳,获得10
15秒前
15秒前
华仔应助石一采纳,获得10
16秒前
Rt发布了新的文献求助30
17秒前
19秒前
子訡发布了新的文献求助10
19秒前
半枝桃完成签到 ,获得积分10
21秒前
Zjx关闭了Zjx文献求助
22秒前
XFaning发布了新的文献求助10
23秒前
慕青应助古月采纳,获得10
24秒前
小管完成签到,获得积分10
24秒前
小彭完成签到,获得积分10
25秒前
SciGPT应助子訡采纳,获得10
25秒前
25秒前
Akim应助鲍勃采纳,获得10
26秒前
繁荣的凝荷完成签到 ,获得积分10
26秒前
Rt完成签到,获得积分10
26秒前
27秒前
28秒前
夏天发布了新的文献求助10
28秒前
29秒前
29秒前
健忘的沛蓝完成签到 ,获得积分10
30秒前
上将军顺完成签到,获得积分10
30秒前
30秒前
31秒前
小小吒儿发布了新的文献求助10
32秒前
充电宝应助lty采纳,获得10
32秒前
32秒前
小小元风完成签到,获得积分10
32秒前
爆米花应助西门子云采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662