A novel method of multiaxial fatigue life prediction based on deep learning

外推法 低周疲劳 深度学习 结构工程 压力(语言学) 人工神经网络 人工智能 抽象 计算机科学 系列(地层学) 机器学习 工程类 数学 统计 地质学 认识论 哲学 古生物学 语言学
作者
Jingye Yang,Guozheng Kang,Yujie Liu,Qianhua Kan
出处
期刊:International Journal of Fatigue [Elsevier BV]
卷期号:151: 106356-106356 被引量:112
标识
DOI:10.1016/j.ijfatigue.2021.106356
摘要

It is well-known that conventional multiaxial fatigue life prediction models are generally limited to specific materials and loading conditions. To remove this limitation, a novel attempt is proposed in this work based on the deep learning (i.e., an improvement of artificial neural network in machine learning approaches, which is powerful to learn representations of data with multiple levels of abstraction). To comprehensively evaluate the prediction capability of proposed deep learning-based method, six series of existing fatigue data of different materials are, respectively, analyzed, in which the main loading conditions concerned in the low-cycle and high-cycle fatigue researches are included, such as loading modes (stress-controlled/strain-controlled modes), loading levels (stress/strain amplitude and mean stress/strain), and loading paths (uniaxial/multiaxial and proportional/non-proportional paths), as well as for low-cycle and high-cycle fatigue regimes. Comparison of the predicted and experimental results shows that: all the loading conditions mentioned above can be handled satisfactorily by the proposed deep learning-based method; excellent prediction accuracy is achieved, and the predicted lives in each study case fall almost within the scatter band of 1.5 times. In addition, four groups of specifically designed data are used to evaluate the extrapolation capability of the proposed method, and the results show that the extrapolation capability gets weaker if the distinctions between the loading paths involved in the training dataset and test one increase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XU2025发布了新的文献求助10
刚刚
清晨发布了新的文献求助10
刚刚
星光完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
犹豫若云完成签到,获得积分20
2秒前
qaz发布了新的文献求助10
2秒前
安静发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
华仔应助寻觅采纳,获得10
4秒前
5秒前
liyi发布了新的文献求助30
6秒前
爱卿5271完成签到,获得积分10
6秒前
MH关注了科研通微信公众号
6秒前
啊印发布了新的文献求助10
6秒前
zzzwwwkkk完成签到,获得积分10
7秒前
kylin发布了新的文献求助10
7秒前
四喜丸子发布了新的文献求助10
7秒前
柒月完成签到,获得积分10
8秒前
8秒前
pangpang完成签到,获得积分10
8秒前
冷水完成签到,获得积分10
9秒前
liu发布了新的文献求助10
9秒前
taco完成签到,获得积分10
9秒前
10秒前
bxb发布了新的文献求助30
10秒前
cd完成签到,获得积分10
11秒前
吱吱发布了新的文献求助10
11秒前
菜鸟勇闯发布了新的文献求助10
12秒前
静水流深完成签到,获得积分10
12秒前
不配.应助univers采纳,获得10
12秒前
12秒前
Lotuslab发布了新的文献求助10
13秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096