A novel method of multiaxial fatigue life prediction based on deep learning

外推法 低周疲劳 深度学习 结构工程 压力(语言学) 人工神经网络 人工智能 抽象 计算机科学 系列(地层学) 机器学习 工程类 数学 统计 地质学 语言学 哲学 认识论 古生物学
作者
Jingye Yang,Guozheng Kang,Yujie Liu,Qianhua Kan
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:151: 106356-106356 被引量:112
标识
DOI:10.1016/j.ijfatigue.2021.106356
摘要

It is well-known that conventional multiaxial fatigue life prediction models are generally limited to specific materials and loading conditions. To remove this limitation, a novel attempt is proposed in this work based on the deep learning (i.e., an improvement of artificial neural network in machine learning approaches, which is powerful to learn representations of data with multiple levels of abstraction). To comprehensively evaluate the prediction capability of proposed deep learning-based method, six series of existing fatigue data of different materials are, respectively, analyzed, in which the main loading conditions concerned in the low-cycle and high-cycle fatigue researches are included, such as loading modes (stress-controlled/strain-controlled modes), loading levels (stress/strain amplitude and mean stress/strain), and loading paths (uniaxial/multiaxial and proportional/non-proportional paths), as well as for low-cycle and high-cycle fatigue regimes. Comparison of the predicted and experimental results shows that: all the loading conditions mentioned above can be handled satisfactorily by the proposed deep learning-based method; excellent prediction accuracy is achieved, and the predicted lives in each study case fall almost within the scatter band of 1.5 times. In addition, four groups of specifically designed data are used to evaluate the extrapolation capability of the proposed method, and the results show that the extrapolation capability gets weaker if the distinctions between the loading paths involved in the training dataset and test one increase.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助王冠军采纳,获得10
刚刚
派大橘完成签到,获得积分10
刚刚
大宝发布了新的文献求助10
1秒前
无限的板栗完成签到 ,获得积分10
1秒前
justin完成签到,获得积分10
1秒前
隐形曼青应助111采纳,获得10
2秒前
3秒前
1073980795发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
维克托发布了新的文献求助10
7秒前
王kk完成签到 ,获得积分10
7秒前
情怀应助易烊千玺老婆采纳,获得10
8秒前
YF完成签到,获得积分10
8秒前
8秒前
paomo发布了新的文献求助10
9秒前
饭fan关注了科研通微信公众号
10秒前
ATOM完成签到,获得积分10
10秒前
靓丽白梦完成签到,获得积分10
10秒前
10秒前
11秒前
小蘑菇应助许可991127采纳,获得10
12秒前
CCC完成签到,获得积分10
12秒前
12秒前
善学以致用应助tomato采纳,获得10
12秒前
13秒前
ding应助shuyingRen采纳,获得10
13秒前
深情安青应助shuyingRen采纳,获得10
13秒前
14秒前
大宝完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
坚定剑成发布了新的文献求助10
17秒前
tiger发布了新的文献求助10
17秒前
纪言七许完成签到 ,获得积分10
17秒前
takumi发布了新的文献求助10
17秒前
18秒前
zzh发布了新的文献求助10
19秒前
小蘑菇应助酶什么幺蛾子采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666691
求助须知:如何正确求助?哪些是违规求助? 4882812
关于积分的说明 15117878
捐赠科研通 4825664
什么是DOI,文献DOI怎么找? 2583534
邀请新用户注册赠送积分活动 1537723
关于科研通互助平台的介绍 1495910