A novel method of multiaxial fatigue life prediction based on deep learning

外推法 低周疲劳 深度学习 结构工程 压力(语言学) 人工神经网络 人工智能 抽象 计算机科学 系列(地层学) 机器学习 工程类 数学 统计 地质学 语言学 哲学 认识论 古生物学
作者
Jingye Yang,Guozheng Kang,Yujie Liu,Qianhua Kan
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:151: 106356-106356 被引量:112
标识
DOI:10.1016/j.ijfatigue.2021.106356
摘要

It is well-known that conventional multiaxial fatigue life prediction models are generally limited to specific materials and loading conditions. To remove this limitation, a novel attempt is proposed in this work based on the deep learning (i.e., an improvement of artificial neural network in machine learning approaches, which is powerful to learn representations of data with multiple levels of abstraction). To comprehensively evaluate the prediction capability of proposed deep learning-based method, six series of existing fatigue data of different materials are, respectively, analyzed, in which the main loading conditions concerned in the low-cycle and high-cycle fatigue researches are included, such as loading modes (stress-controlled/strain-controlled modes), loading levels (stress/strain amplitude and mean stress/strain), and loading paths (uniaxial/multiaxial and proportional/non-proportional paths), as well as for low-cycle and high-cycle fatigue regimes. Comparison of the predicted and experimental results shows that: all the loading conditions mentioned above can be handled satisfactorily by the proposed deep learning-based method; excellent prediction accuracy is achieved, and the predicted lives in each study case fall almost within the scatter band of 1.5 times. In addition, four groups of specifically designed data are used to evaluate the extrapolation capability of the proposed method, and the results show that the extrapolation capability gets weaker if the distinctions between the loading paths involved in the training dataset and test one increase.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wchoi发布了新的文献求助10
刚刚
Lucas应助Silence采纳,获得10
1秒前
ZY完成签到 ,获得积分0
2秒前
杨莹发布了新的文献求助10
2秒前
稳重的蛟凤完成签到 ,获得积分10
2秒前
2秒前
3秒前
5秒前
5秒前
yyc完成签到,获得积分10
5秒前
5秒前
Syu完成签到,获得积分20
5秒前
5秒前
wanghanhan完成签到,获得积分10
5秒前
小牛发布了新的文献求助10
6秒前
爆米花应助长至采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
自由蓝发布了新的文献求助10
6秒前
7秒前
墨小菊发布了新的文献求助10
7秒前
8秒前
李健应助科研通管家采纳,获得10
8秒前
spc68应助科研通管家采纳,获得10
8秒前
spc68应助科研通管家采纳,获得10
8秒前
jiben发布了新的文献求助10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
6777777L发布了新的文献求助10
8秒前
暴躁火龙果完成签到,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
欢呼的白玉完成签到 ,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
liao应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972