Online Signal Denoising Using Adaptive Stochastic Resonance in Parallel Array and Its Application to Acoustic Emission Signals

双稳态 噪音(视频) 声学 先验与后验 信号(编程语言) 计算机科学 算法 降噪 噪声测量 信号处理 随机共振 电子工程 信噪比(成像) 人工智能 工程类 物理 电信 量子力学 认识论 图像(数学) 哲学 程序设计语言 雷达
作者
Jinki Kim,Ryan L. Harne,Kon‐Well Wang
出处
期刊:Journal of Vibration and Acoustics 卷期号:144 (3) 被引量:8
标识
DOI:10.1115/1.4052639
摘要

Abstract Signal denoising has been significantly explored in various engineering disciplines. In particular, structural health monitoring applications generally aim to detect weak anomaly responses (including acoustic emission (AE)) generated by incipient damage, which are easily buried in noise. Among various approaches, stochastic resonance (SR) has been widely adopted for weak signal detection. While many advancements have been focused on identifying useful information from the frequency domain by optimizing parameters in a post-processing environment to activate SR, it often requires detailed information about the original signal a priori, which is hardly assessed from signals overwhelmed by noise. This research presents a novel online signal denoising strategy by utilizing SR in a parallel array of bistable systems. The original noisy input with additionally applied noise is adaptively scaled, so that the total noise level matches the optimal level that is analytically predicted from a generalized model to robustly enhance signal denoising performance for a wide range of input amplitudes that are often not known in advance. Thus, without sophisticated post-processing procedures, the scaling factor is straightforwardly determined by the analytically estimated optimal noise level and the ambient noise level, which is one of the few quantities that can be reliably assessed from noisy signals in practice. Along with numerical investigations that demonstrate the operational principle and the effectiveness of the proposed strategy, experimental validation of denoising AE signals by employing a bistable Duffing circuit system exemplifies the promising potential of implementing the new approach for enhancing online signal denoising in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小崽总完成签到,获得积分10
刚刚
ying发布了新的文献求助10
1秒前
1秒前
默默的井完成签到,获得积分20
2秒前
2秒前
4秒前
5秒前
哈哈完成签到,获得积分20
6秒前
cctv18应助D-L@rabbit采纳,获得10
6秒前
6秒前
打打应助pxptmac采纳,获得10
6秒前
可爱的函函应助草莓熊采纳,获得10
6秒前
Viva应助呆萌老丁采纳,获得20
6秒前
循环完成签到,获得积分10
6秒前
小熊饼干完成签到,获得积分10
6秒前
默默的井发布了新的文献求助10
6秒前
炫技且谦虚完成签到,获得积分20
7秒前
7秒前
玄鸟纸鸢发布了新的文献求助10
7秒前
forstudy发布了新的文献求助10
8秒前
深情安青应助lijiaoyang采纳,获得10
8秒前
8秒前
夏夜完成签到,获得积分10
9秒前
昌莆完成签到,获得积分10
11秒前
11秒前
mhl11应助齐水告采纳,获得10
11秒前
cc0514gr完成签到,获得积分10
12秒前
12秒前
玄鸟纸鸢完成签到,获得积分10
13秒前
lll完成签到,获得积分10
13秒前
东晓发布了新的文献求助10
13秒前
循环发布了新的文献求助100
13秒前
刘小小123发布了新的文献求助10
14秒前
14秒前
15秒前
李爱国应助xingyue采纳,获得10
16秒前
17秒前
17秒前
17秒前
华仔应助BAMM采纳,获得10
18秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325577
求助须知:如何正确求助?哪些是违规求助? 2956275
关于积分的说明 8579868
捐赠科研通 2634243
什么是DOI,文献DOI怎么找? 1441821
科研通“疑难数据库(出版商)”最低求助积分说明 667952
邀请新用户注册赠送积分活动 654755