罗丹明B
光催化
纳米复合材料
材料科学
石墨烯
傅里叶变换红外光谱
氧化物
催化作用
降级(电信)
光化学
水溶液
化学工程
核化学
纳米技术
化学
有机化学
冶金
电信
工程类
计算机科学
作者
Pankaj Singh Chauhan,K. Shravan Kumar,Kirtiman Singh,Shantanu Bhattacharya
标识
DOI:10.1016/j.synthmet.2021.116981
摘要
Degradation of dyes through Metal-oxide semiconductors using Advanced Oxidation Process (AOP) presents a unique opportunity for the development of advanced treatment techniques for effective removal of dyes from industrial wastewater. In this paper, an experimental study is being carried out by synthesizing the vanadium pentoxide–reduced graphene oxide (V 2 O 5 -rGO) nanocomposite for effective dye-degradation through photocatalysis under solar irradiation. V 2 O 5 -rGO nanocomposite is obtained by using an easy and efficient procedure of V 2 O 5 nanowire in an rGO solution. V 2 O 5 nanowires when bonded to rGO sheets (2D), serves as an excellent catalyst for the degradation of Rhodamine-B (RhB) dye. V 2 O 5 -rGO nanocomposites has been characterized using FESEM (Field Emission Scanning Electron Microscope), XRD (X-Ray Diffraction), and FTIR (Fourier Transform Infrared spectroscopy) techniques. V 2 O 5 -rGO is primarily used as a photocatalyst which utilizes sunlight for degradation of aqueous Rhodamine-B (RhB) dye through the principle of photoreaction. The nanocomposite shows ̴ 97% dye removal efficiency of RhB (20 mg/L) solution for a short processing time of 50 min. The study shows an increased generation of hydroxyl radicals (∙OH) in the presence of rGO sheets in the catalyst, which supports the photocatalytic process through suppression of electron (e - ) and hole (h + ) recombination causing the degradation of RhB dyes. Adding rGO shows ~84% faster decolorization in comparison to pure V 2 O 5 . The catalyst efficacy is further evaluated through varying pH of the RhB solution medium. A pH dependency of the reaction rate is observed with the fastest degradation time in the presence of V 2 O 5 -rGO nanocomposite being achieved at a pH of 9. Reusable catalytic properties for the suspended V 2 O 5 -rGO nanocomposite are studied for 6 cycles and the degradation efficiency of more than 90% is observed in 50 min. A brief study is performed to determine the decreased photocatalytic performance, which is fully reverted using simple chemical treatment by H 2 O 2 and UV irradiation for further usage of the photocatalyst. • Experimental study through synthesis of V 2 O 5 -rGO nanocomposites for effective degradation of Rhodamine-B (RhB) dye. • Development of the nanocomposite using an easy and efficient mixing of V 2 O 5 nanowire in rGO solution. • V 2 O 5 -rGO works as an efficient photocatalyst with fast reaction kinetics to remove RhB dye. • H 2 O 2 /UV treatment regenerates the V 2 O 5 -rGO photocatalyst and increases the working cycles. • V 2 O 5 -rGO nanocomposite was reused for 6 cycles and the degradation efficiency of more than 90% is observed in 50 min.
科研通智能强力驱动
Strongly Powered by AbleSci AI