Self-Trained Target Detection of Radar and Sonar Images Using Automatic Deep Learning

计算机科学 人工智能 雷达成像 自动目标识别 雷达 遥感 雷达锁定 合成孔径雷达 声纳 计算机视觉 地质学 连续波雷达 电信
作者
Peng Zhang,Jinsong Tang,Heping Zhong,Mingqiang Ning,Dandan Liu,Ke Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:93
标识
DOI:10.1109/tgrs.2021.3096011
摘要

Recent deep learning (DL) detectors adopted by radar or sonar (RS) are normally trained with transfer learning, where the typical workflow is to pretrain a convolutional neural network (CNN) on external large-scale classification datasets (e.g., ImageNet) as the backbone and then finetune the entire detector on detection datasets. Though transfer learning could effectively avoid overfitting, transferred models are usually redundant and might not generalize well on RS datasets. To achieve high generalization and to eliminate the dependence on transfer learning, a self-trained target detection method is established by including Automatic Deep Learning (AutoDL) to design optimal detectors. This self-trained target detection consists of three stages. First, a derived classification dataset (DCD) consisting of image blocks of targets and backgrounds is derived from detection datasets. Then, a memory-efficient Differentiable Architecture Search algorithm with flexible search space and large inputs (FL-DARTS), which is characterized by its predefined multistride convolutions, poolings, and unique super-structure, is proposed to automatically design and self-train optimal CNNs on DCDs. Finally, self-trained AutoDL detectors are implemented with the automatic backbone designed by FL-DARTS. We evaluated three self-trained AutoDL detectors on the public SAR ship detection dataset (SSDD) and the self-made sonar common target detection dataset (SCTD). The experiments show that while the number of parameters of automatic backbones designed for SSDD and SCTD are only 11.8% and 15.2% of that of ResNet50, self-trained AutoDL detectors implemented with automatic backbones significantly outperform their transfer learning detectors and achieve state-of-the-art detection precisions and high detection speeds. Data, codes are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zyx完成签到,获得积分10
刚刚
简7发布了新的文献求助30
刚刚
佐zzz发布了新的文献求助10
1秒前
lxl发布了新的文献求助10
2秒前
2秒前
上官若男应助ZY采纳,获得10
2秒前
3秒前
4秒前
热情的远锋完成签到 ,获得积分10
5秒前
5秒前
浮游应助晴子采纳,获得10
6秒前
量子星尘发布了新的文献求助10
8秒前
兰兰不懒发布了新的文献求助10
9秒前
Hello应助佐zzz采纳,获得10
9秒前
10秒前
老实的斌完成签到 ,获得积分10
11秒前
2425完成签到,获得积分10
12秒前
田様应助专一的戒指采纳,获得10
13秒前
fengwanru发布了新的文献求助10
13秒前
维尼熊完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
铅笔刀完成签到,获得积分10
18秒前
淡淡萍完成签到,获得积分10
18秒前
yilia完成签到,获得积分10
19秒前
丘比特应助guo采纳,获得30
20秒前
JW完成签到,获得积分10
22秒前
huihui完成签到,获得积分10
24秒前
快乐的寄容完成签到 ,获得积分10
27秒前
29秒前
29秒前
真君山山长完成签到,获得积分10
31秒前
MYunn完成签到,获得积分10
32秒前
lokiyyy发布了新的文献求助10
33秒前
33秒前
35秒前
深情安青应助彭瞻采纳,获得10
35秒前
xiaomi发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
39秒前
彭于晏应助找文献呢采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700