已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-Trained Target Detection of Radar and Sonar Images Using Automatic Deep Learning

计算机科学 人工智能 雷达成像 自动目标识别 雷达 遥感 雷达锁定 合成孔径雷达 声纳 计算机视觉 地质学 连续波雷达 电信
作者
Peng Zhang,Jinsong Tang,Heping Zhong,Mingqiang Ning,Dandan Liu,Ke Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:75
标识
DOI:10.1109/tgrs.2021.3096011
摘要

Recent deep learning (DL) detectors adopted by radar or sonar (RS) are normally trained with transfer learning, where the typical workflow is to pretrain a convolutional neural network (CNN) on external large-scale classification datasets (e.g., ImageNet) as the backbone and then finetune the entire detector on detection datasets. Though transfer learning could effectively avoid overfitting, transferred models are usually redundant and might not generalize well on RS datasets. To achieve high generalization and to eliminate the dependence on transfer learning, a self-trained target detection method is established by including Automatic Deep Learning (AutoDL) to design optimal detectors. This self-trained target detection consists of three stages. First, a derived classification dataset (DCD) consisting of image blocks of targets and backgrounds is derived from detection datasets. Then, a memory-efficient Differentiable Architecture Search algorithm with flexible search space and large inputs (FL-DARTS), which is characterized by its predefined multistride convolutions, poolings, and unique super-structure, is proposed to automatically design and self-train optimal CNNs on DCDs. Finally, self-trained AutoDL detectors are implemented with the automatic backbone designed by FL-DARTS. We evaluated three self-trained AutoDL detectors on the public SAR ship detection dataset (SSDD) and the self-made sonar common target detection dataset (SCTD). The experiments show that while the number of parameters of automatic backbones designed for SSDD and SCTD are only 11.8% and 15.2% of that of ResNet50, self-trained AutoDL detectors implemented with automatic backbones significantly outperform their transfer learning detectors and achieve state-of-the-art detection precisions and high detection speeds. Data, codes are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘菠萝完成签到 ,获得积分10
4秒前
tt完成签到 ,获得积分10
5秒前
33完成签到,获得积分10
15秒前
16秒前
漓一完成签到 ,获得积分10
16秒前
海贵完成签到,获得积分10
17秒前
22秒前
yu完成签到 ,获得积分10
26秒前
善学以致用应助迷路慕凝采纳,获得10
28秒前
31秒前
柒年啵啵完成签到 ,获得积分10
34秒前
方利俊完成签到,获得积分10
34秒前
38秒前
JIA完成签到,获得积分10
39秒前
littleboykk发布了新的文献求助30
42秒前
春天的粥完成签到 ,获得积分10
43秒前
45秒前
yu完成签到 ,获得积分10
47秒前
50秒前
米奇完成签到 ,获得积分10
52秒前
冷艳的语雪完成签到 ,获得积分10
53秒前
54秒前
洸彦完成签到 ,获得积分10
55秒前
littleboykk完成签到,获得积分10
1分钟前
stark完成签到,获得积分10
1分钟前
jerry完成签到,获得积分10
1分钟前
大脸猫完成签到 ,获得积分10
1分钟前
制冷剂完成签到 ,获得积分10
1分钟前
嘻嘻哈哈应助谢嘻嘻嘻嘻采纳,获得10
1分钟前
1分钟前
可爱猫完成签到 ,获得积分10
1分钟前
语行完成签到 ,获得积分10
1分钟前
小姚姚完成签到,获得积分10
1分钟前
1分钟前
汤汤完成签到 ,获得积分10
1分钟前
John完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
The Experimental Biology of Bryophytes 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5366354
求助须知:如何正确求助?哪些是违规求助? 4495093
关于积分的说明 13995268
捐赠科研通 4399366
什么是DOI,文献DOI怎么找? 2416647
邀请新用户注册赠送积分活动 1409394
关于科研通互助平台的介绍 1384488