Self-Trained Target Detection of Radar and Sonar Images Using Automatic Deep Learning

计算机科学 人工智能 雷达成像 自动目标识别 雷达 遥感 雷达锁定 合成孔径雷达 声纳 计算机视觉 地质学 连续波雷达 电信
作者
Peng Zhang,Jinsong Tang,Heping Zhong,Mingqiang Ning,Dandan Liu,Ke Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:93
标识
DOI:10.1109/tgrs.2021.3096011
摘要

Recent deep learning (DL) detectors adopted by radar or sonar (RS) are normally trained with transfer learning, where the typical workflow is to pretrain a convolutional neural network (CNN) on external large-scale classification datasets (e.g., ImageNet) as the backbone and then finetune the entire detector on detection datasets. Though transfer learning could effectively avoid overfitting, transferred models are usually redundant and might not generalize well on RS datasets. To achieve high generalization and to eliminate the dependence on transfer learning, a self-trained target detection method is established by including Automatic Deep Learning (AutoDL) to design optimal detectors. This self-trained target detection consists of three stages. First, a derived classification dataset (DCD) consisting of image blocks of targets and backgrounds is derived from detection datasets. Then, a memory-efficient Differentiable Architecture Search algorithm with flexible search space and large inputs (FL-DARTS), which is characterized by its predefined multistride convolutions, poolings, and unique super-structure, is proposed to automatically design and self-train optimal CNNs on DCDs. Finally, self-trained AutoDL detectors are implemented with the automatic backbone designed by FL-DARTS. We evaluated three self-trained AutoDL detectors on the public SAR ship detection dataset (SSDD) and the self-made sonar common target detection dataset (SCTD). The experiments show that while the number of parameters of automatic backbones designed for SSDD and SCTD are only 11.8% and 15.2% of that of ResNet50, self-trained AutoDL detectors implemented with automatic backbones significantly outperform their transfer learning detectors and achieve state-of-the-art detection precisions and high detection speeds. Data, codes are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
Zzzz发布了新的文献求助10
刚刚
所所应助科研通管家采纳,获得10
刚刚
无奈的醉薇完成签到,获得积分10
1秒前
科研通AI6.1应助xinqisusu采纳,获得10
2秒前
秋风飒完成签到,获得积分10
2秒前
2秒前
Shuo Yang完成签到,获得积分10
3秒前
一只小鲨鱼完成签到 ,获得积分10
3秒前
MO发布了新的文献求助10
3秒前
现代的凡之完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
无限幻枫发布了新的文献求助10
5秒前
西米发布了新的文献求助10
5秒前
汉堡包应助cslghe采纳,获得10
6秒前
美人小姨完成签到,获得积分10
6秒前
6秒前
刘荣鑫发布了新的文献求助10
7秒前
小米发布了新的文献求助10
7秒前
WW完成签到,获得积分10
7秒前
7秒前
搜集达人应助崔双艳采纳,获得10
8秒前
科目三应助淡淡夕阳采纳,获得10
9秒前
科目三应助早点睡觉丶采纳,获得10
9秒前
Gyr060307发布了新的文献求助10
10秒前
共享精神应助lingling采纳,获得10
10秒前
震甫完成签到,获得积分20
10秒前
大个应助Function采纳,获得10
11秒前
美人小姨发布了新的文献求助10
12秒前
婷婷发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762181
求助须知:如何正确求助?哪些是违规求助? 5534311
关于积分的说明 15402288
捐赠科研通 4898393
什么是DOI,文献DOI怎么找? 2634850
邀请新用户注册赠送积分活动 1583000
关于科研通互助平台的介绍 1538201