Self-Trained Target Detection of Radar and Sonar Images Using Automatic Deep Learning

计算机科学 人工智能 雷达成像 自动目标识别 雷达 遥感 雷达锁定 合成孔径雷达 声纳 计算机视觉 地质学 连续波雷达 电信
作者
Peng Zhang,Jinsong Tang,Heping Zhong,Mingqiang Ning,Dandan Liu,Ke Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:93
标识
DOI:10.1109/tgrs.2021.3096011
摘要

Recent deep learning (DL) detectors adopted by radar or sonar (RS) are normally trained with transfer learning, where the typical workflow is to pretrain a convolutional neural network (CNN) on external large-scale classification datasets (e.g., ImageNet) as the backbone and then finetune the entire detector on detection datasets. Though transfer learning could effectively avoid overfitting, transferred models are usually redundant and might not generalize well on RS datasets. To achieve high generalization and to eliminate the dependence on transfer learning, a self-trained target detection method is established by including Automatic Deep Learning (AutoDL) to design optimal detectors. This self-trained target detection consists of three stages. First, a derived classification dataset (DCD) consisting of image blocks of targets and backgrounds is derived from detection datasets. Then, a memory-efficient Differentiable Architecture Search algorithm with flexible search space and large inputs (FL-DARTS), which is characterized by its predefined multistride convolutions, poolings, and unique super-structure, is proposed to automatically design and self-train optimal CNNs on DCDs. Finally, self-trained AutoDL detectors are implemented with the automatic backbone designed by FL-DARTS. We evaluated three self-trained AutoDL detectors on the public SAR ship detection dataset (SSDD) and the self-made sonar common target detection dataset (SCTD). The experiments show that while the number of parameters of automatic backbones designed for SSDD and SCTD are only 11.8% and 15.2% of that of ResNet50, self-trained AutoDL detectors implemented with automatic backbones significantly outperform their transfer learning detectors and achieve state-of-the-art detection precisions and high detection speeds. Data, codes are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小赵发布了新的文献求助10
1秒前
完美含羞草完成签到 ,获得积分10
3秒前
赘婿应助俭朴晓凡采纳,获得30
3秒前
xiaoju发布了新的文献求助10
4秒前
5秒前
5秒前
LXdjlx完成签到,获得积分20
5秒前
F龙顺完成签到 ,获得积分10
5秒前
qiudaoyv11发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助六尺巷采纳,获得10
6秒前
xingxing完成签到,获得积分10
6秒前
飞飞飞发布了新的文献求助10
6秒前
Lyuoah完成签到 ,获得积分10
7秒前
Earrr发布了新的文献求助10
7秒前
7秒前
hellozijia完成签到,获得积分10
8秒前
无辜的丹雪应助玲家傻妞采纳,获得10
8秒前
完美的溪灵完成签到,获得积分10
9秒前
上官若男应助zz采纳,获得10
9秒前
10秒前
Akim应助yy采纳,获得10
11秒前
haiqin28发布了新的文献求助10
11秒前
11秒前
11秒前
huan发布了新的文献求助10
11秒前
安琦发布了新的文献求助10
12秒前
ding应助Jenny采纳,获得10
12秒前
13秒前
Yang完成签到,获得积分10
13秒前
13秒前
飘落的樱花完成签到,获得积分10
13秒前
liliwang发布了新的文献求助20
13秒前
14秒前
小二郎应助LXdjlx采纳,获得10
14秒前
yys发布了新的文献求助10
15秒前
一颗橙子CCC完成签到,获得积分10
15秒前
慕青应助宋依依采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559