Self-Trained Target Detection of Radar and Sonar Images Using Automatic Deep Learning

计算机科学 人工智能 雷达成像 自动目标识别 雷达 遥感 雷达锁定 合成孔径雷达 声纳 计算机视觉 地质学 连续波雷达 电信
作者
Peng Zhang,Jinsong Tang,Heping Zhong,Mingqiang Ning,Dandan Liu,Ke Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:93
标识
DOI:10.1109/tgrs.2021.3096011
摘要

Recent deep learning (DL) detectors adopted by radar or sonar (RS) are normally trained with transfer learning, where the typical workflow is to pretrain a convolutional neural network (CNN) on external large-scale classification datasets (e.g., ImageNet) as the backbone and then finetune the entire detector on detection datasets. Though transfer learning could effectively avoid overfitting, transferred models are usually redundant and might not generalize well on RS datasets. To achieve high generalization and to eliminate the dependence on transfer learning, a self-trained target detection method is established by including Automatic Deep Learning (AutoDL) to design optimal detectors. This self-trained target detection consists of three stages. First, a derived classification dataset (DCD) consisting of image blocks of targets and backgrounds is derived from detection datasets. Then, a memory-efficient Differentiable Architecture Search algorithm with flexible search space and large inputs (FL-DARTS), which is characterized by its predefined multistride convolutions, poolings, and unique super-structure, is proposed to automatically design and self-train optimal CNNs on DCDs. Finally, self-trained AutoDL detectors are implemented with the automatic backbone designed by FL-DARTS. We evaluated three self-trained AutoDL detectors on the public SAR ship detection dataset (SSDD) and the self-made sonar common target detection dataset (SCTD). The experiments show that while the number of parameters of automatic backbones designed for SSDD and SCTD are only 11.8% and 15.2% of that of ResNet50, self-trained AutoDL detectors implemented with automatic backbones significantly outperform their transfer learning detectors and achieve state-of-the-art detection precisions and high detection speeds. Data, codes are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
4秒前
某某完成签到,获得积分10
5秒前
鑫渊发布了新的文献求助10
6秒前
科研小白完成签到 ,获得积分10
6秒前
哈哈哈完成签到,获得积分10
7秒前
ncushiqiang完成签到,获得积分10
7秒前
Jameson完成签到,获得积分10
7秒前
7秒前
水123发布了新的文献求助10
8秒前
浅忆晨曦完成签到 ,获得积分10
9秒前
努力的学完成签到,获得积分10
10秒前
Rose发布了新的文献求助10
11秒前
smile完成签到 ,获得积分10
11秒前
司空元正完成签到,获得积分10
11秒前
科目三应助lo采纳,获得10
11秒前
清欢完成签到,获得积分10
12秒前
阿腾发布了新的文献求助10
13秒前
15秒前
Owen应助科研通管家采纳,获得10
15秒前
勤劳冰安应助科研通管家采纳,获得10
16秒前
叁零完成签到,获得积分10
16秒前
科研通AI6应助科研通管家采纳,获得30
16秒前
科研通AI6应助科研通管家采纳,获得30
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
吕洺旭应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
16秒前
吕洺旭应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
华仔应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603909
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14856065
捐赠科研通 4695384
什么是DOI,文献DOI怎么找? 2541023
邀请新用户注册赠送积分活动 1507167
关于科研通互助平台的介绍 1471832