Self-Trained Target Detection of Radar and Sonar Images Using Automatic Deep Learning

计算机科学 人工智能 雷达成像 自动目标识别 雷达 遥感 雷达锁定 合成孔径雷达 声纳 计算机视觉 地质学 连续波雷达 电信
作者
Peng Zhang,Jinsong Tang,Heping Zhong,Mingqiang Ning,Dandan Liu,Ke Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:93
标识
DOI:10.1109/tgrs.2021.3096011
摘要

Recent deep learning (DL) detectors adopted by radar or sonar (RS) are normally trained with transfer learning, where the typical workflow is to pretrain a convolutional neural network (CNN) on external large-scale classification datasets (e.g., ImageNet) as the backbone and then finetune the entire detector on detection datasets. Though transfer learning could effectively avoid overfitting, transferred models are usually redundant and might not generalize well on RS datasets. To achieve high generalization and to eliminate the dependence on transfer learning, a self-trained target detection method is established by including Automatic Deep Learning (AutoDL) to design optimal detectors. This self-trained target detection consists of three stages. First, a derived classification dataset (DCD) consisting of image blocks of targets and backgrounds is derived from detection datasets. Then, a memory-efficient Differentiable Architecture Search algorithm with flexible search space and large inputs (FL-DARTS), which is characterized by its predefined multistride convolutions, poolings, and unique super-structure, is proposed to automatically design and self-train optimal CNNs on DCDs. Finally, self-trained AutoDL detectors are implemented with the automatic backbone designed by FL-DARTS. We evaluated three self-trained AutoDL detectors on the public SAR ship detection dataset (SSDD) and the self-made sonar common target detection dataset (SCTD). The experiments show that while the number of parameters of automatic backbones designed for SSDD and SCTD are only 11.8% and 15.2% of that of ResNet50, self-trained AutoDL detectors implemented with automatic backbones significantly outperform their transfer learning detectors and achieve state-of-the-art detection precisions and high detection speeds. Data, codes are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
番茄大王完成签到,获得积分10
刚刚
刚刚
comz完成签到,获得积分10
刚刚
Science完成签到,获得积分10
刚刚
leo瀚发布了新的文献求助10
刚刚
茶色完成签到,获得积分10
刚刚
美满信封完成签到 ,获得积分10
1秒前
1秒前
科研通AI6应助陈云凤采纳,获得10
2秒前
2秒前
Shixin发布了新的文献求助10
2秒前
可爱电源完成签到,获得积分10
2秒前
2秒前
3秒前
米卡米卡发布了新的文献求助10
3秒前
cindy完成签到,获得积分10
4秒前
geold发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
小巧风华完成签到,获得积分10
6秒前
7秒前
小猴子应助美好的夜白采纳,获得10
7秒前
马某某某某某完成签到,获得积分10
7秒前
llllhh完成签到,获得积分10
7秒前
7秒前
7秒前
小雨哥完成签到,获得积分10
8秒前
BareBear应助啦啦啦采纳,获得10
8秒前
李晶发布了新的文献求助10
8秒前
嘉宝发布了新的文献求助10
8秒前
8秒前
澜冰发布了新的文献求助20
8秒前
跑快点发布了新的文献求助20
8秒前
不摸鱼上啥班完成签到,获得积分10
8秒前
sbrcpyf完成签到,获得积分10
9秒前
chenqiumu应助惜昭采纳,获得30
9秒前
9秒前
充电宝应助反正不万岁采纳,获得10
9秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580183
求助须知:如何正确求助?哪些是违规求助? 4665044
关于积分的说明 14754353
捐赠科研通 4606555
什么是DOI,文献DOI怎么找? 2527823
邀请新用户注册赠送积分活动 1497229
关于科研通互助平台的介绍 1466289