Self-Trained Target Detection of Radar and Sonar Images Using Automatic Deep Learning

计算机科学 人工智能 雷达成像 自动目标识别 雷达 遥感 雷达锁定 合成孔径雷达 声纳 计算机视觉 地质学 连续波雷达 电信
作者
Peng Zhang,Jinsong Tang,Heping Zhong,Mingqiang Ning,Dandan Liu,Ke Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:75
标识
DOI:10.1109/tgrs.2021.3096011
摘要

Recent deep learning (DL) detectors adopted by radar or sonar (RS) are normally trained with transfer learning, where the typical workflow is to pretrain a convolutional neural network (CNN) on external large-scale classification datasets (e.g., ImageNet) as the backbone and then finetune the entire detector on detection datasets. Though transfer learning could effectively avoid overfitting, transferred models are usually redundant and might not generalize well on RS datasets. To achieve high generalization and to eliminate the dependence on transfer learning, a self-trained target detection method is established by including Automatic Deep Learning (AutoDL) to design optimal detectors. This self-trained target detection consists of three stages. First, a derived classification dataset (DCD) consisting of image blocks of targets and backgrounds is derived from detection datasets. Then, a memory-efficient Differentiable Architecture Search algorithm with flexible search space and large inputs (FL-DARTS), which is characterized by its predefined multistride convolutions, poolings, and unique super-structure, is proposed to automatically design and self-train optimal CNNs on DCDs. Finally, self-trained AutoDL detectors are implemented with the automatic backbone designed by FL-DARTS. We evaluated three self-trained AutoDL detectors on the public SAR ship detection dataset (SSDD) and the self-made sonar common target detection dataset (SCTD). The experiments show that while the number of parameters of automatic backbones designed for SSDD and SCTD are only 11.8% and 15.2% of that of ResNet50, self-trained AutoDL detectors implemented with automatic backbones significantly outperform their transfer learning detectors and achieve state-of-the-art detection precisions and high detection speeds. Data, codes are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助棕榈采纳,获得10
刚刚
wen发布了新的文献求助10
刚刚
东木应助汪惜寒采纳,获得100
1秒前
1秒前
11完成签到,获得积分10
2秒前
科研通AI5应助雷培采纳,获得10
2秒前
KEQIN应助eui采纳,获得10
3秒前
_Y_X_L_发布了新的文献求助10
4秒前
闪闪的河马完成签到,获得积分10
5秒前
木木完成签到,获得积分10
5秒前
wyx发布了新的文献求助10
6秒前
X7完成签到,获得积分10
7秒前
11秒前
顾矜应助HSA采纳,获得10
12秒前
大方的汉堡完成签到,获得积分10
12秒前
纳米完成签到,获得积分10
13秒前
年轻元冬完成签到,获得积分10
14秒前
活泼的海豚完成签到,获得积分10
14秒前
cincrady完成签到,获得积分10
15秒前
16秒前
顾矜应助等待冰露采纳,获得10
17秒前
17秒前
17秒前
棕榈发布了新的文献求助10
18秒前
20秒前
Avatar发布了新的文献求助10
20秒前
善学以致用应助Profeto采纳,获得10
23秒前
幼安k发布了新的文献求助10
23秒前
25秒前
所所应助坚定萤采纳,获得10
27秒前
爱吃香菜完成签到 ,获得积分10
34秒前
领导范儿应助赵淑晴采纳,获得10
35秒前
大模型应助wanwan采纳,获得10
36秒前
36秒前
jzmupyj完成签到,获得积分10
37秒前
hZC发布了新的文献求助10
40秒前
cultromics发布了新的文献求助10
40秒前
42秒前
123456完成签到 ,获得积分10
44秒前
悦悦完成签到 ,获得积分10
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997679
求助须知:如何正确求助?哪些是违规求助? 3537190
关于积分的说明 11270985
捐赠科研通 3276344
什么是DOI,文献DOI怎么找? 1806900
邀请新用户注册赠送积分活动 883582
科研通“疑难数据库(出版商)”最低求助积分说明 809975