Self-Trained Target Detection of Radar and Sonar Images Using Automatic Deep Learning

计算机科学 人工智能 雷达成像 自动目标识别 雷达 遥感 雷达锁定 合成孔径雷达 声纳 计算机视觉 地质学 连续波雷达 电信
作者
Peng Zhang,Jinsong Tang,Heping Zhong,Mingqiang Ning,Dandan Liu,Ke Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:93
标识
DOI:10.1109/tgrs.2021.3096011
摘要

Recent deep learning (DL) detectors adopted by radar or sonar (RS) are normally trained with transfer learning, where the typical workflow is to pretrain a convolutional neural network (CNN) on external large-scale classification datasets (e.g., ImageNet) as the backbone and then finetune the entire detector on detection datasets. Though transfer learning could effectively avoid overfitting, transferred models are usually redundant and might not generalize well on RS datasets. To achieve high generalization and to eliminate the dependence on transfer learning, a self-trained target detection method is established by including Automatic Deep Learning (AutoDL) to design optimal detectors. This self-trained target detection consists of three stages. First, a derived classification dataset (DCD) consisting of image blocks of targets and backgrounds is derived from detection datasets. Then, a memory-efficient Differentiable Architecture Search algorithm with flexible search space and large inputs (FL-DARTS), which is characterized by its predefined multistride convolutions, poolings, and unique super-structure, is proposed to automatically design and self-train optimal CNNs on DCDs. Finally, self-trained AutoDL detectors are implemented with the automatic backbone designed by FL-DARTS. We evaluated three self-trained AutoDL detectors on the public SAR ship detection dataset (SSDD) and the self-made sonar common target detection dataset (SCTD). The experiments show that while the number of parameters of automatic backbones designed for SSDD and SCTD are only 11.8% and 15.2% of that of ResNet50, self-trained AutoDL detectors implemented with automatic backbones significantly outperform their transfer learning detectors and achieve state-of-the-art detection precisions and high detection speeds. Data, codes are publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mosisa完成签到,获得积分10
刚刚
白凌风完成签到 ,获得积分10
刚刚
刚刚
Jasper应助简单又菱采纳,获得10
1秒前
3秒前
整齐的不评完成签到,获得积分10
3秒前
swimming完成签到 ,获得积分10
3秒前
ayan发布了新的文献求助10
4秒前
zz发布了新的文献求助10
4秒前
害怕的冰颜完成签到 ,获得积分10
5秒前
舒心代柔完成签到,获得积分10
7秒前
传奇3应助柠檬脾气可爱采纳,获得10
7秒前
陈文海完成签到,获得积分10
11秒前
13秒前
arnoan发布了新的文献求助10
18秒前
桐桐应助zz采纳,获得10
20秒前
ZHANG发布了新的文献求助10
21秒前
ghfgjjf完成签到 ,获得积分10
27秒前
拼搏映菡完成签到 ,获得积分10
32秒前
爱尔兰的狼完成签到,获得积分10
37秒前
研友_VZG7GZ应助俏皮天荷采纳,获得10
41秒前
哈哈哈完成签到 ,获得积分10
41秒前
小湛完成签到 ,获得积分10
41秒前
Happy完成签到 ,获得积分10
42秒前
luqianling完成签到,获得积分10
43秒前
欧阳月空完成签到,获得积分10
43秒前
44秒前
csx应助爱尔兰的狼采纳,获得10
44秒前
Bb发布了新的文献求助10
47秒前
ayan完成签到,获得积分10
47秒前
49秒前
李某发布了新的文献求助10
49秒前
简单幻天发布了新的文献求助10
54秒前
54秒前
李某完成签到 ,获得积分10
55秒前
大个应助Bb采纳,获得10
55秒前
haha完成签到 ,获得积分10
56秒前
萧东辰完成签到,获得积分10
56秒前
luqianling发布了新的文献求助10
57秒前
XXXXXX发布了新的文献求助10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645604
关于积分的说明 14675724
捐赠科研通 4586775
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460989