AdaRNN: Adaptive Learning and Forecasting of Time Series

系列(地层学) 计算机科学 时间序列 人工智能 计量经济学 机器学习 经济 地质学 古生物学
作者
Yuntao Du,Jindong Wang,Wenjie Feng,Sinno Jialin Pan,Tao Qin,Renjun Xu,Chongjun Wang
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2108.04443
摘要

Time series has wide applications in the real world and is known to be difficult to forecast. Since its statistical properties change over time, its distribution also changes temporally, which will cause severe distribution shift problem to existing methods. However, it remains unexplored to model the time series in the distribution perspective. In this paper, we term this as Temporal Covariate Shift (TCS). This paper proposes Adaptive RNNs (AdaRNN) to tackle the TCS problem by building an adaptive model that generalizes well on the unseen test data. AdaRNN is sequentially composed of two novel algorithms. First, we propose Temporal Distribution Characterization to better characterize the distribution information in the TS. Second, we propose Temporal Distribution Matching to reduce the distribution mismatch in TS to learn the adaptive TS model. AdaRNN is a general framework with flexible distribution distances integrated. Experiments on human activity recognition, air quality prediction, and financial analysis show that AdaRNN outperforms the latest methods by a classification accuracy of 2.6% and significantly reduces the RMSE by 9.0%. We also show that the temporal distribution matching algorithm can be extended in Transformer structure to boost its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沧海青州发布了新的文献求助10
刚刚
完犊子完成签到,获得积分20
刚刚
dumeng完成签到,获得积分10
1秒前
wnx001111发布了新的文献求助10
1秒前
jchen完成签到,获得积分10
2秒前
月关发布了新的文献求助20
3秒前
4秒前
lvyan发布了新的文献求助10
4秒前
苗条香发布了新的文献求助10
4秒前
幸福诗槐完成签到,获得积分10
5秒前
哈瓜豆完成签到,获得积分10
6秒前
吃土豆的番茄完成签到,获得积分10
6秒前
airwing发布了新的文献求助10
6秒前
7秒前
euphoria完成签到,获得积分10
8秒前
8秒前
8秒前
ky发布了新的文献求助10
8秒前
8秒前
Bestchu完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
Bestchu关注了科研通微信公众号
11秒前
感性的剑愁完成签到,获得积分10
12秒前
12秒前
12秒前
Ace发布了新的文献求助10
12秒前
13秒前
15秒前
乐乐应助hehsk采纳,获得10
15秒前
15秒前
脑洞疼应助LBJ采纳,获得10
15秒前
哇哇发布了新的文献求助30
15秒前
Snoopy发布了新的文献求助10
15秒前
浮游应助hkh采纳,获得10
16秒前
16秒前
ROBO应助hkh采纳,获得10
16秒前
Loki应助hkh采纳,获得10
16秒前
浮游应助hkh采纳,获得10
16秒前
SciGPT应助hkh采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072862
求助须知:如何正确求助?哪些是违规求助? 4293130
关于积分的说明 13377256
捐赠科研通 4114419
什么是DOI,文献DOI怎么找? 2252964
邀请新用户注册赠送积分活动 1257744
关于科研通互助平台的介绍 1190631