Deepfakes generation and detection: state-of-the-art, open challenges, countermeasures, and way forward

计算机科学 数据科学 造谣 社会化媒体 深度学习 钥匙(锁) 开放式研究 人工智能 传播 计算机安全 万维网 电信
作者
Momina Masood,Marriam Nawaz,Khalid Mahmood Malik,Ali Javed,Aun Irtaza,Hafiz Malik
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (4): 3974-4026 被引量:189
标识
DOI:10.1007/s10489-022-03766-z
摘要

Easy access to audio-visual content on social media, combined with the availability of modern tools such as Tensorflow or Keras, and open-source trained models, along with economical computing infrastructure, and the rapid evolution of deep-learning (DL) methods have heralded a new and frightening trend. Particularly, the advent of easily available and ready to use Generative Adversarial Networks (GANs), have made it possible to generate deepfakes media partially or completely fabricated with the intent to deceive to disseminate disinformation and revenge porn, to perpetrate financial frauds and other hoaxes, and to disrupt government functioning. Existing surveys have mainly focused on the detection of deepfake images and videos; this paper provides a comprehensive review and detailed analysis of existing tools and machine learning (ML) based approaches for deepfake generation, and the methodologies used to detect such manipulations in both audio and video. For each category of deepfake, we discuss information related to manipulation approaches, current public datasets, and key standards for the evaluation of the performance of deepfake detection techniques, along with their results. Additionally, we also discuss open challenges and enumerate future directions to guide researchers on issues which need to be considered in order to improve the domains of both deepfake generation and detection. This work is expected to assist readers in understanding how deepfakes are created and detected, along with their current limitations and where future research may lead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助加菲丰丰采纳,获得10
1秒前
1秒前
阿鹿462完成签到 ,获得积分10
2秒前
wufel2完成签到,获得积分10
2秒前
3秒前
luria完成签到,获得积分10
3秒前
Aria完成签到,获得积分10
3秒前
orixero应助蕊蕊采纳,获得10
3秒前
Judy完成签到 ,获得积分10
4秒前
Jey发布了新的文献求助10
4秒前
陀螺完成签到,获得积分10
5秒前
5秒前
6秒前
Henry应助不安映雁采纳,获得200
6秒前
7秒前
7秒前
8秒前
zho关闭了zho文献求助
9秒前
10秒前
害羞行云完成签到,获得积分20
10秒前
v啦啦啦啦完成签到,获得积分10
10秒前
10秒前
土豆丝发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
aaaaa发布了新的文献求助10
12秒前
scofield完成签到,获得积分10
12秒前
独特背包完成签到,获得积分10
13秒前
scofield发布了新的文献求助30
14秒前
老老实实好好活着完成签到,获得积分10
14秒前
啦啦啦发布了新的文献求助10
15秒前
bkagyin应助aa采纳,获得10
15秒前
天天喝咖啡完成签到,获得积分20
16秒前
11发布了新的文献求助10
17秒前
田様应助cza采纳,获得10
18秒前
情怀应助jjkjkjkjj采纳,获得10
18秒前
彭于彦祖应助micpeach采纳,获得20
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155565
求助须知:如何正确求助?哪些是违规求助? 2806679
关于积分的说明 7870461
捐赠科研通 2465012
什么是DOI,文献DOI怎么找? 1312079
科研通“疑难数据库(出版商)”最低求助积分说明 629860
版权声明 601892