Enhanced Detection of Heart Valve Disease Using Integrated Artificial Intelligence at Scale

医学 狭窄 医疗保健 人口 心脏病 疾病 心脏病学 内科学 医疗急救 环境卫生 经济 经济增长
作者
Daniel O’Hair,Hemal Gada,Miguel Sotelo,Loren Wagner,Cara M. Feind,Logan Brigman,Chris Rogers,Navjot Kohli
出处
期刊:The Annals of Thoracic Surgery [Elsevier BV]
卷期号:113 (5): 1499-1504 被引量:4
标识
DOI:10.1016/j.athoracsur.2021.04.106
摘要

Undertreatment of heart valve disease creates unnecessary patient risk. Poorly integrated healthcare data systems are unequipped to solve this problem. A software program using a rules-based algorithm to search the electronic health record for heart valve disease among patients treated by healthcare systems in the United States may provide a solution.A software interface allowed concurrent access to picture archiving communication systems, the electronic health record, and other sources. The software platform was created to programmatically run a rules engine to search structured and unstructured data for identification of moderate or severe heart valve disease using guideline-reported values. Incidence and progression of disease as well as compliance with a care pathway were assessed.In 2 health institutions in the United States 60,145 patients had 77,215 echocardiograms. Moderate or severe aortic stenosis (AS) was identified at a rate of 9.1% of patients (5474 and 6910 echocardiograms) in this population. The precision and accuracy of the algorithm for the detection of moderate or severe AS was 92.9% and 98.6%, respectively. Thirty-five percent of patients (441/1265) with moderate stenosis and a subsequent echocardiogram progressed to severe stenosis (mean interval, 358 days). In 1 sample 70.3% of moderate AS patients lacked a 6-month echocardiogram or appointment. The platform enabled 100% accountability for all patients with severe AS.A rules-based software program enhances detection of heart valve disease and can be used to measures disease progression and care pathway compliance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobai发布了新的文献求助10
2秒前
2秒前
3秒前
无限猫咪完成签到 ,获得积分10
4秒前
4秒前
领导范儿应助wwm采纳,获得10
4秒前
不挤牙膏发布了新的文献求助10
6秒前
xiangoak发布了新的文献求助10
7秒前
有魅力曼荷完成签到 ,获得积分10
7秒前
徐什么坤完成签到,获得积分10
8秒前
8秒前
卷卷发布了新的文献求助10
9秒前
hyg发布了新的文献求助30
11秒前
123发布了新的文献求助10
12秒前
14秒前
勤奋无敌完成签到 ,获得积分10
15秒前
土豆泥完成签到 ,获得积分10
16秒前
kano完成签到 ,获得积分10
16秒前
19秒前
Wang1991发布了新的文献求助10
20秒前
Owen应助跳跃的洪纲采纳,获得10
21秒前
yyy完成签到,获得积分20
21秒前
香蕉觅云应助123采纳,获得10
22秒前
shaohua2011发布了新的文献求助10
23秒前
25秒前
英姑应助谢谢谢采纳,获得10
26秒前
27秒前
den发布了新的文献求助10
29秒前
29秒前
30秒前
30秒前
31秒前
32秒前
在水一方应助runer采纳,获得10
32秒前
LBY发布了新的文献求助10
34秒前
恩雁发布了新的文献求助10
35秒前
共享精神应助连仁兄采纳,获得10
37秒前
JamesPei应助连仁兄采纳,获得10
37秒前
wgglegg完成签到,获得积分10
38秒前
慕青应助du采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624785
求助须知:如何正确求助?哪些是违规求助? 4024076
关于积分的说明 12456301
捐赠科研通 3708763
什么是DOI,文献DOI怎么找? 2045646
邀请新用户注册赠送积分活动 1077637
科研通“疑难数据库(出版商)”最低求助积分说明 960142