重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Enhanced Detection of Heart Valve Disease Using Integrated Artificial Intelligence at Scale

医学 狭窄 医疗保健 人口 心脏病 疾病 心脏病学 内科学 医疗急救 经济增长 环境卫生 经济
作者
Daniel O’Hair,Hemal Gada,Miguel Sotelo,Loren Wagner,Cara M. Feind,Logan Brigman,Chris Rogers,Navjot Kohli
出处
期刊:The Annals of Thoracic Surgery [Elsevier]
卷期号:113 (5): 1499-1504 被引量:4
标识
DOI:10.1016/j.athoracsur.2021.04.106
摘要

Undertreatment of heart valve disease creates unnecessary patient risk. Poorly integrated healthcare data systems are unequipped to solve this problem. A software program using a rules-based algorithm to search the electronic health record for heart valve disease among patients treated by healthcare systems in the United States may provide a solution.A software interface allowed concurrent access to picture archiving communication systems, the electronic health record, and other sources. The software platform was created to programmatically run a rules engine to search structured and unstructured data for identification of moderate or severe heart valve disease using guideline-reported values. Incidence and progression of disease as well as compliance with a care pathway were assessed.In 2 health institutions in the United States 60,145 patients had 77,215 echocardiograms. Moderate or severe aortic stenosis (AS) was identified at a rate of 9.1% of patients (5474 and 6910 echocardiograms) in this population. The precision and accuracy of the algorithm for the detection of moderate or severe AS was 92.9% and 98.6%, respectively. Thirty-five percent of patients (441/1265) with moderate stenosis and a subsequent echocardiogram progressed to severe stenosis (mean interval, 358 days). In 1 sample 70.3% of moderate AS patients lacked a 6-month echocardiogram or appointment. The platform enabled 100% accountability for all patients with severe AS.A rules-based software program enhances detection of heart valve disease and can be used to measures disease progression and care pathway compliance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华理附院孙文博完成签到 ,获得积分10
1秒前
1秒前
1秒前
3秒前
小白发布了新的文献求助10
3秒前
4秒前
Jasper应助殷楷霖采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
大意的雪珍完成签到,获得积分10
6秒前
YUAN发布了新的文献求助10
6秒前
颜倾完成签到,获得积分10
7秒前
科研通AI6应助徐徐采纳,获得10
7秒前
qaqa发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
小蘑菇应助小张采纳,获得10
10秒前
丘比特应助treeman采纳,获得10
10秒前
10秒前
kk完成签到 ,获得积分10
11秒前
12秒前
风清扬发布了新的文献求助10
12秒前
Jasper应助Dr.Yang采纳,获得10
14秒前
木一发布了新的文献求助10
14秒前
15秒前
qaqa完成签到,获得积分20
16秒前
16秒前
殷楷霖发布了新的文献求助10
17秒前
彭于晏应助优秀静珊采纳,获得10
19秒前
19秒前
19秒前
科研通AI6应助风清扬采纳,获得30
20秒前
兆渊完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
zz的奇妙冒险完成签到,获得积分10
23秒前
Yun完成签到 ,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737