Enhanced Detection of Heart Valve Disease Using Integrated Artificial Intelligence at Scale

医学 狭窄 医疗保健 人口 心脏病 疾病 心脏病学 内科学 医疗急救 经济增长 环境卫生 经济
作者
Daniel O’Hair,Hemal Gada,Miguel Sotelo,Loren Wagner,Cara M. Feind,Logan Brigman,Chris Rogers,Navjot Kohli
出处
期刊:The Annals of Thoracic Surgery [Elsevier]
卷期号:113 (5): 1499-1504 被引量:4
标识
DOI:10.1016/j.athoracsur.2021.04.106
摘要

Undertreatment of heart valve disease creates unnecessary patient risk. Poorly integrated healthcare data systems are unequipped to solve this problem. A software program using a rules-based algorithm to search the electronic health record for heart valve disease among patients treated by healthcare systems in the United States may provide a solution.A software interface allowed concurrent access to picture archiving communication systems, the electronic health record, and other sources. The software platform was created to programmatically run a rules engine to search structured and unstructured data for identification of moderate or severe heart valve disease using guideline-reported values. Incidence and progression of disease as well as compliance with a care pathway were assessed.In 2 health institutions in the United States 60,145 patients had 77,215 echocardiograms. Moderate or severe aortic stenosis (AS) was identified at a rate of 9.1% of patients (5474 and 6910 echocardiograms) in this population. The precision and accuracy of the algorithm for the detection of moderate or severe AS was 92.9% and 98.6%, respectively. Thirty-five percent of patients (441/1265) with moderate stenosis and a subsequent echocardiogram progressed to severe stenosis (mean interval, 358 days). In 1 sample 70.3% of moderate AS patients lacked a 6-month echocardiogram or appointment. The platform enabled 100% accountability for all patients with severe AS.A rules-based software program enhances detection of heart valve disease and can be used to measures disease progression and care pathway compliance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助niu1采纳,获得10
刚刚
KONG发布了新的文献求助10
刚刚
爆米花应助成梦采纳,获得10
刚刚
yhl完成签到,获得积分20
1秒前
皮皮发布了新的文献求助10
2秒前
圆圆的脑袋应助SCISSH采纳,获得10
3秒前
阳光的雁山完成签到,获得积分10
3秒前
霖宸羽完成签到,获得积分10
4秒前
6秒前
无奈的代珊完成签到 ,获得积分10
6秒前
7秒前
7秒前
搜集达人应助糊涂的小伙采纳,获得10
7秒前
mmd完成签到 ,获得积分10
8秒前
8秒前
Lily完成签到,获得积分10
9秒前
温言发布了新的文献求助10
10秒前
10秒前
Roy完成签到,获得积分10
10秒前
永远少年完成签到,获得积分10
12秒前
niu1发布了新的文献求助10
12秒前
13秒前
Danny完成签到,获得积分10
13秒前
Lsx完成签到 ,获得积分10
13秒前
又胖了发布了新的文献求助10
14秒前
14秒前
小小飞发布了新的文献求助20
15秒前
15秒前
15秒前
16秒前
wanci应助NorthWang采纳,获得10
16秒前
zhen完成签到,获得积分10
18秒前
ns发布了新的文献求助30
19秒前
20秒前
逐风完成签到,获得积分10
20秒前
无奈的酒窝完成签到,获得积分10
21秒前
21秒前
22秒前
blingbling发布了新的文献求助10
22秒前
今后应助SherlockLiu采纳,获得30
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808