Differentiating Between Migraine and Post-traumatic Headache Using a Machine Learning Classifier

偏头痛 医学 逻辑回归 人工智能 内科学 计算机科学
作者
Gina Dumkrieger,Catherine D. Chong,Katherine Ross,Visar Berisha,Todd J. Schwedt
出处
期刊:Neurology [Ovid Technologies (Wolters Kluwer)]
卷期号:98 (1): S5-S6 被引量:2
标识
DOI:10.1212/01.wnl.0000801780.76758.b7
摘要

The objective was to develop classification models differentiating persistent PTH (PPTH) and migraine using clinical data and MRI-based measures of brain structure and functional connectivity.PTH and migraine commonly have similar phenotypes. Furthermore, migraine is a risk factor for developing PTH, sometimes making it difficult to differentiate PTH from exacerbation of migraine symptoms.Thirty-four individuals with migraine without history of TBI and 48 individuals with mild TBI attributed to PPTH but without history of migraine or prior frequent tension type headache were included. Subjects completed questionnaires assessing headache characteristics, mood, sensory hypersensitivities and cognitive function and underwent MRI imaging during the same day. Clinical features and structural brain measures from T1-weighted imaging, diffusion tensor imaging and functional resting-state measures were included as potential variables. A classifier using ridge logistic regression of principal components (PC) was fit. Since PCs can hinder identification of significant variables in a model, a second regression model was fit directly to the data. In the non-PC based model, input variables were selected based on lowest t-test or chi-square p-value by modality. Average accuracy was calculated using leave-one-out cross validation. The importance of variables to the classifier were examined.The PC-based classifier achieved an average classification accuracy of 85%. The non-PC based classifier achieved an average classification accuracy of 74.4%. Both classifiers were more accurate at classifying migraine subjects than PPTH. The PC-based model incorrectly classified 9/48 (18.8%) PPTH subjects compared to 3/34 (8.8%) migraine patients, whereas the non-PC classifier incorrectly classed 16/48 (33.3%) vs 5/34 (14.7%) of migraine subjects. Important variables in the non-PC model included static and dynamic functional connectivity values, several questions from the Beck Depression Inventory, and worsening symptoms and headaches with mental activity.Multivariate models including clinical characteristics, functional connectivity, and brain structural data accurately classify and differentiate PPTH vs migraine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panpanliumin完成签到,获得积分0
5秒前
6秒前
明某到此一游完成签到 ,获得积分10
10秒前
小刘哥加油完成签到 ,获得积分10
12秒前
boom完成签到 ,获得积分10
14秒前
打工人发布了新的文献求助10
20秒前
修fei完成签到 ,获得积分10
26秒前
27秒前
小杨完成签到 ,获得积分10
27秒前
xingxing完成签到 ,获得积分10
28秒前
wangsai0532完成签到,获得积分10
28秒前
lily完成签到,获得积分10
39秒前
肉肉完成签到 ,获得积分10
40秒前
张颖完成签到 ,获得积分10
40秒前
boom完成签到 ,获得积分10
41秒前
儒雅冬云完成签到,获得积分10
45秒前
花花糖果完成签到 ,获得积分10
46秒前
烟熏妆的猫完成签到 ,获得积分10
55秒前
鞘皮完成签到,获得积分10
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
UGO发布了新的文献求助10
1分钟前
淡淡秋完成签到,获得积分20
1分钟前
NN完成签到,获得积分10
1分钟前
upupup111完成签到 ,获得积分10
1分钟前
江任意西完成签到 ,获得积分10
1分钟前
超级的妙晴完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分0
1分钟前
1分钟前
都要多喝水完成签到,获得积分10
1分钟前
伶俐芷珊发布了新的文献求助20
1分钟前
岳凯完成签到 ,获得积分10
1分钟前
1分钟前
隔壁小曾完成签到 ,获得积分10
1分钟前
我就想看看文献完成签到 ,获得积分10
1分钟前
自由的中蓝完成签到 ,获得积分10
1分钟前
1分钟前
向上的小v完成签到 ,获得积分10
1分钟前
ken131完成签到 ,获得积分10
2分钟前
HH完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171668
求助须知:如何正确求助?哪些是违规求助? 2822467
关于积分的说明 7939330
捐赠科研通 2483112
什么是DOI,文献DOI怎么找? 1322990
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647