Differentiating Between Migraine and Post-traumatic Headache Using a Machine Learning Classifier

偏头痛 医学 逻辑回归 人工智能 内科学 计算机科学
作者
Gina Dumkrieger,Catherine D. Chong,Katherine Ross,Visar Berisha,Todd J. Schwedt
出处
期刊:Neurology [Ovid Technologies (Wolters Kluwer)]
卷期号:98 (1): S5-S6 被引量:2
标识
DOI:10.1212/01.wnl.0000801780.76758.b7
摘要

The objective was to develop classification models differentiating persistent PTH (PPTH) and migraine using clinical data and MRI-based measures of brain structure and functional connectivity.PTH and migraine commonly have similar phenotypes. Furthermore, migraine is a risk factor for developing PTH, sometimes making it difficult to differentiate PTH from exacerbation of migraine symptoms.Thirty-four individuals with migraine without history of TBI and 48 individuals with mild TBI attributed to PPTH but without history of migraine or prior frequent tension type headache were included. Subjects completed questionnaires assessing headache characteristics, mood, sensory hypersensitivities and cognitive function and underwent MRI imaging during the same day. Clinical features and structural brain measures from T1-weighted imaging, diffusion tensor imaging and functional resting-state measures were included as potential variables. A classifier using ridge logistic regression of principal components (PC) was fit. Since PCs can hinder identification of significant variables in a model, a second regression model was fit directly to the data. In the non-PC based model, input variables were selected based on lowest t-test or chi-square p-value by modality. Average accuracy was calculated using leave-one-out cross validation. The importance of variables to the classifier were examined.The PC-based classifier achieved an average classification accuracy of 85%. The non-PC based classifier achieved an average classification accuracy of 74.4%. Both classifiers were more accurate at classifying migraine subjects than PPTH. The PC-based model incorrectly classified 9/48 (18.8%) PPTH subjects compared to 3/34 (8.8%) migraine patients, whereas the non-PC classifier incorrectly classed 16/48 (33.3%) vs 5/34 (14.7%) of migraine subjects. Important variables in the non-PC model included static and dynamic functional connectivity values, several questions from the Beck Depression Inventory, and worsening symptoms and headaches with mental activity.Multivariate models including clinical characteristics, functional connectivity, and brain structural data accurately classify and differentiate PPTH vs migraine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nj完成签到,获得积分20
1秒前
直率笑槐完成签到,获得积分20
5秒前
6秒前
6秒前
threewei完成签到,获得积分10
8秒前
东方三问应助小雷要学习采纳,获得10
8秒前
8秒前
萧萧应助yeda706采纳,获得10
8秒前
10秒前
我不发布了新的文献求助10
10秒前
ywuuu发布了新的文献求助10
10秒前
笨笨的秋蝶完成签到,获得积分10
12秒前
13秒前
蔡1发布了新的文献求助10
13秒前
王津丹完成签到,获得积分10
13秒前
英俊的铭应助浮浮世世采纳,获得200
13秒前
14秒前
14秒前
鄂老三发布了新的文献求助10
14秒前
15秒前
15秒前
无情的镜子完成签到,获得积分10
15秒前
栾欣怡完成签到,获得积分20
16秒前
小学生库里完成签到,获得积分10
16秒前
慕青应助张张的张采纳,获得10
17秒前
黄诺发布了新的文献求助30
17秒前
田様应助Bismarck采纳,获得10
17秒前
伟航发布了新的文献求助10
18秒前
18秒前
19秒前
直率的惜文完成签到 ,获得积分10
20秒前
动听松思发布了新的文献求助10
20秒前
恒恒发布了新的文献求助10
20秒前
顺利的雪卉完成签到 ,获得积分10
20秒前
十个qin天完成签到,获得积分20
21秒前
22秒前
小雷要学习完成签到,获得积分10
22秒前
自由萝卜发布了新的文献求助30
22秒前
情怀应助祺Q采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298335
求助须知:如何正确求助?哪些是违规求助? 4446911
关于积分的说明 13840905
捐赠科研通 4332290
什么是DOI,文献DOI怎么找? 2378093
邀请新用户注册赠送积分活动 1373358
关于科研通互助平台的介绍 1338939