Decomposing crop model uncertainty: A systematic review

DSSAT公司 气候变化 作物产量 农业工程 不确定度分析 环境科学 作物模拟模型 作物 气候模式 仿真建模 计量经济学 数学 农学 统计 生态学 工程类 生物 数理经济学
作者
Ranju Chapagain,Tomas A. Remenyi,Rebecca M. B. Harris,CL Mohammed,Neil Huth,Daniel Wallach,Ehsan Eyshi Rezaei,Jonathan J. Ojeda
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:279: 108448-108448 被引量:53
标识
DOI:10.1016/j.fcr.2022.108448
摘要

Crop models are essential tools for analysing the effects of climate variability, change on crop growth and development and the potential impact of adaptation strategies. Despite their increasing usage, crop model estimations have implicit uncertainties which are difficult to classify and quantify. Failure to address these uncertainties may result in poor advice to policymakers and stakeholders for the development of adaptation strategies. Since the 1990s, the number of crop model uncertainty assessments that consider different sources of model uncertainty (model structure, model parameters and model inputs such as climate, soil, and crop management practices) has increased significantly. We present the outcomes of a systematic review focused on uncertainty assessments of crop model outputs (mainly grain yield) and crop model uncertainty decomposition. We reviewed 277 articles from 1991 to 2019 which included studies conducted in 82 countries (460 locations) across all continents. 57% of the articles have been published between 2015 and 2019. 52% of the studies focus on input uncertainty assessments with climate change projections as the most frequently considered source of input uncertainty. Only 28% and 20% of the studies, respectively, dealt with uncertainties related to model parameters and model structure. The latter was mainly quantified using multi-model ensembles. Over half the studies were carried out in European and Asian countries, 34% and 23%, respectively. Most articles estimated model uncertainty focusing on the grain yield of major cereal crops (wheat > maize > rice) using the Decision Support System for Agrotechnology Transfer (DSSAT) model. Sensitivity analysis was the most used technique to quantify the contribution of different sources of uncertainty although the range of approaches for uncertainty quantification was wide. There is a need for standard procedures to estimate crop model uncertainty and evaluate estimates. We discuss the challenges of quantifying the components of uncertainty within crop models and identify research needs to better understand sources of uncertainty and thus improve the accuracy of crop models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinge3787发布了新的文献求助50
刚刚
科研通AI5应助平淡的绿蓉采纳,获得10
1秒前
1秒前
英姑应助nav采纳,获得10
2秒前
情怀应助可耐的元容采纳,获得10
2秒前
孝顺的青筠完成签到,获得积分10
2秒前
zxb完成签到,获得积分10
2秒前
hyx7735发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
5秒前
5秒前
珞珈完成签到 ,获得积分10
5秒前
WKY完成签到,获得积分10
5秒前
实验耗材完成签到,获得积分10
6秒前
感动的初柔完成签到,获得积分10
7秒前
许安发布了新的文献求助10
7秒前
Numdance发布了新的文献求助20
7秒前
7秒前
Eirrr发布了新的文献求助10
7秒前
7秒前
研友_8oYPrn发布了新的文献求助10
7秒前
8秒前
爆米花应助若水采纳,获得10
9秒前
tesla发布了新的文献求助10
9秒前
小马甲应助琳琳采纳,获得10
9秒前
9秒前
9秒前
9秒前
穆紫应助Wayi采纳,获得10
10秒前
10秒前
10秒前
11秒前
hyx7735完成签到,获得积分10
12秒前
打工人22发布了新的文献求助10
12秒前
12秒前
小勾发布了新的文献求助10
12秒前
Coolv_xx完成签到,获得积分10
12秒前
七夜完成签到,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3657769
求助须知:如何正确求助?哪些是违规求助? 3219792
关于积分的说明 9733339
捐赠科研通 2928765
什么是DOI,文献DOI怎么找? 1603671
邀请新用户注册赠送积分活动 756684
科研通“疑难数据库(出版商)”最低求助积分说明 734055