A Crossmodal Multiscale Fusion Network for Semantic Segmentation of Remote Sensing Data

计算机科学 卷积神经网络 人工智能 交叉模态 传感器融合 分割 判别式 特征提取 模式识别(心理学) 感知 生物 神经科学 视觉感受
作者
Xianping Ma,Xiaokang Zhang,Man-On Pun
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 3463-3474 被引量:44
标识
DOI:10.1109/jstars.2022.3165005
摘要

Driven by the rapid development of Earth observation sensors, semantic segmentation using multimodal fusion of remote sensing data has drawn substantial research attention in recent years. However, existing multimodal fusion methods based on convolutional neural networks cannot capture long-range dependencies across multiscale feature maps of remote sensing data in different modalities. To circumvent this problem, this work proposes a crossmodal multiscale fusion network (CMFNet) by exploiting the transformer architecture. In contrast to the conventional early, late, or hybrid fusion networks, the proposed CMFNet fuses information of different modalities at multiple scales using the cross-attention mechanism. More specifically, the CMFNet utilizes a novel cross-modal attention architecture to fuse multiscale convolutional feature maps of optical remote sensing images and digital surface model data through a crossmodal multiscale transformer (CMTrans) and a multiscale context augmented transformer (MCATrans). The CMTrans can effectively model long-range dependencies across multiscale feature maps derived from multimodal data, while the MCATrans can learn discriminative integrated representations for semantic segmentation. Extensive experiments on two large-scale fine-resolution remote sensing datasets, namely ISPRS Vaihingen and Potsdam, confirm the excellent performance of the proposed CMFNet as compared to other multimodal fusion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuxuxu完成签到,获得积分10
刚刚
文龙完成签到 ,获得积分10
刚刚
ximomm完成签到,获得积分10
刚刚
无不破哉发布了新的文献求助10
刚刚
刚刚
研友_bZzkR8完成签到,获得积分10
1秒前
XIXI发布了新的文献求助30
1秒前
再沉默发布了新的文献求助10
2秒前
子俞发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
打打应助习习采纳,获得10
3秒前
bluer发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI5应助无悔呀采纳,获得10
5秒前
毛毛虫完成签到,获得积分10
5秒前
快乐小文完成签到,获得积分10
5秒前
Nooooo发布了新的文献求助10
6秒前
6秒前
贰鸟应助木之以南采纳,获得10
6秒前
无不破哉完成签到,获得积分20
6秒前
Dai WJ发布了新的文献求助10
7秒前
黄大师完成签到 ,获得积分10
7秒前
愤怒的河虾完成签到,获得积分10
7秒前
所所应助XIXI采纳,获得10
7秒前
麻麻发布了新的文献求助10
8秒前
经法发布了新的文献求助10
8秒前
MailkMonk完成签到,获得积分20
8秒前
cici完成签到,获得积分10
9秒前
快乐小文发布了新的文献求助30
9秒前
惜寒完成签到 ,获得积分10
9秒前
9秒前
Grayball应助无奈梦岚采纳,获得10
9秒前
此生不换完成签到 ,获得积分10
10秒前
寻舟者完成签到,获得积分10
11秒前
11秒前
11秒前
橘子屿布丁完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678