Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer’s disease

神经影像学 医学 正电子发射断层摄影术 疾病 神经心理学 认知障碍 内科学 认知 肿瘤科 比例危险模型 队列 阿尔茨海默病神经影像学倡议 核医学 精神科
作者
Jiehui Jiang,Min Wang,Ian Alberts,Xiaoming Sun,Taoran Li,Axel Rominger,Chuantao Zuo,Ying Han,Kuangyu Shi,for the Alzheimer’s Disease Neuroim Initiative
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (7): 2163-2173 被引量:28
标识
DOI:10.1007/s00259-022-05687-y
摘要

BackgroundPredicting the risk of disease progression from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) has important clinical significance. This study aimed to provide a personalized MCI-to-AD conversion prediction via radiomics-based predictive modelling (RPM) with multicenter 18F-fluorodeoxyglucose positron emission tomography (FDG PET) data.MethodFDG PET and neuropsychological data of 884 subjects were collected from Huashan Hospital, Xuanwu Hospital, and from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. First, 34,400 radiomic features were extracted from the 80 regions of interest (ROIs) for all PET images. These features were then concatenated for feature selection, and an RPM model was constructed and validated on the ADNI dataset. In addition, we used clinical data and the routine semiquantification index (standard uptake value ratio, SUVR) to establish clinical and SUVR Cox models for further comparison. FDG images from local hospitals were used to explore RPM performance in a separate cohort of individuals with healthy controls and different cognitive levels (a complete AD continuum). Finally, correlation analysis was conducted between the radiomic biomarkers and neuropsychological assessments.ResultsThe experimental results showed that the predictive performance of the RPM Cox model was better than that of other Cox models. In the validation dataset, Harrell’s consistency coefficient of the RPM model was 0.703 ± 0.002, while those of the clinical and SUVR models were 0.632 ± 0.006 and 0.683 ± 0.009, respectively. Moreover, most crucial imaging biomarkers were significantly different at different cognitive stages and significantly correlated with cognitive disease severity.ConclusionThe preliminary results demonstrated that the developed RPM approach has the potential to monitor progression in high-risk populations with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whuhustwit发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
爆米花应助无敌龙傲天采纳,获得10
4秒前
隐形曼青应助lin采纳,获得10
5秒前
菜小瓜完成签到,获得积分10
5秒前
失眠的广山完成签到 ,获得积分10
6秒前
6秒前
cccy发布了新的文献求助10
8秒前
阳光的中蓝完成签到 ,获得积分10
9秒前
SciGPT应助祥梦伊飞采纳,获得10
11秒前
12秒前
13秒前
14秒前
Leo完成签到 ,获得积分10
16秒前
17秒前
SciGPT应助社恐小魏采纳,获得10
17秒前
tangt糖糖完成签到,获得积分10
18秒前
19秒前
21秒前
23秒前
24秒前
西伯利亚快车完成签到,获得积分10
24秒前
cccy完成签到,获得积分10
25秒前
李爱国应助存钱买馒头采纳,获得10
27秒前
28秒前
祥梦伊飞发布了新的文献求助10
28秒前
宋德智发布了新的文献求助10
30秒前
Soleil发布了新的文献求助10
31秒前
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
所所应助科研通管家采纳,获得10
33秒前
研友_VZG7GZ应助科研通管家采纳,获得10
34秒前
栗子应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
老婆婆应助科研通管家采纳,获得50
34秒前
34秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291