已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer’s disease

无线电技术 医学 疾病 认知障碍 内科学 认知 阿尔茨海默病 放射科 精神科
作者
Jiehui Jiang,Min Wang,Ian Alberts,Xiaoming Sun,Taoran Li,Axel Rominger,Chuantao Zuo,Ying Han,Kuangyu Shi,for the Alzheimer’s Disease Neuroim Initiative
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (7): 2163-2173 被引量:38
标识
DOI:10.1007/s00259-022-05687-y
摘要

BackgroundPredicting the risk of disease progression from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) has important clinical significance. This study aimed to provide a personalized MCI-to-AD conversion prediction via radiomics-based predictive modelling (RPM) with multicenter 18F-fluorodeoxyglucose positron emission tomography (FDG PET) data.MethodFDG PET and neuropsychological data of 884 subjects were collected from Huashan Hospital, Xuanwu Hospital, and from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. First, 34,400 radiomic features were extracted from the 80 regions of interest (ROIs) for all PET images. These features were then concatenated for feature selection, and an RPM model was constructed and validated on the ADNI dataset. In addition, we used clinical data and the routine semiquantification index (standard uptake value ratio, SUVR) to establish clinical and SUVR Cox models for further comparison. FDG images from local hospitals were used to explore RPM performance in a separate cohort of individuals with healthy controls and different cognitive levels (a complete AD continuum). Finally, correlation analysis was conducted between the radiomic biomarkers and neuropsychological assessments.ResultsThe experimental results showed that the predictive performance of the RPM Cox model was better than that of other Cox models. In the validation dataset, Harrell’s consistency coefficient of the RPM model was 0.703 ± 0.002, while those of the clinical and SUVR models were 0.632 ± 0.006 and 0.683 ± 0.009, respectively. Moreover, most crucial imaging biomarkers were significantly different at different cognitive stages and significantly correlated with cognitive disease severity.ConclusionThe preliminary results demonstrated that the developed RPM approach has the potential to monitor progression in high-risk populations with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星海妖魂完成签到,获得积分10
刚刚
布丁拿铁发布了新的文献求助10
1秒前
yaya发布了新的文献求助10
1秒前
1秒前
33完成签到 ,获得积分10
2秒前
夏雪儿完成签到,获得积分10
3秒前
星海妖魂发布了新的文献求助10
3秒前
研友_Z6Qrbn完成签到,获得积分10
3秒前
华仔应助灵巧映梦采纳,获得10
4秒前
董是鑫完成签到 ,获得积分10
5秒前
李木槿发布了新的文献求助10
7秒前
一辰不染完成签到,获得积分10
9秒前
许三问完成签到 ,获得积分0
11秒前
充电宝应助mxene八戒大王采纳,获得10
11秒前
池雨完成签到 ,获得积分10
12秒前
qaxt完成签到,获得积分10
15秒前
iamnottingting完成签到,获得积分10
16秒前
烟花应助Lebpom采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
莫宁完成签到 ,获得积分10
23秒前
等待完成签到 ,获得积分10
23秒前
24秒前
25秒前
25秒前
25秒前
25秒前
高大厉完成签到 ,获得积分10
25秒前
Zheyuan完成签到,获得积分10
25秒前
27秒前
28秒前
susu完成签到,获得积分10
28秒前
黎明完成签到,获得积分10
31秒前
31秒前
Hello应助menghai采纳,获得10
32秒前
jiang完成签到 ,获得积分10
33秒前
杨杨发布了新的文献求助10
34秒前
Moonpie应助科研通管家采纳,获得10
35秒前
Moonpie应助科研通管家采纳,获得10
35秒前
Moonpie应助科研通管家采纳,获得10
35秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746304
求助须知:如何正确求助?哪些是违规求助? 5432389
关于积分的说明 15355073
捐赠科研通 4886192
什么是DOI,文献DOI怎么找? 2627124
邀请新用户注册赠送积分活动 1575600
关于科研通互助平台的介绍 1532323