Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer’s disease

无线电技术 医学 疾病 认知障碍 内科学 认知 阿尔茨海默病 放射科 精神科
作者
Jiehui Jiang,Min Wang,Ian Alberts,Xiaoming Sun,Taoran Li,Axel Rominger,Chuantao Zuo,Ying Han,Kuangyu Shi,for the Alzheimer’s Disease Neuroim Initiative
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (7): 2163-2173 被引量:38
标识
DOI:10.1007/s00259-022-05687-y
摘要

BackgroundPredicting the risk of disease progression from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) has important clinical significance. This study aimed to provide a personalized MCI-to-AD conversion prediction via radiomics-based predictive modelling (RPM) with multicenter 18F-fluorodeoxyglucose positron emission tomography (FDG PET) data.MethodFDG PET and neuropsychological data of 884 subjects were collected from Huashan Hospital, Xuanwu Hospital, and from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. First, 34,400 radiomic features were extracted from the 80 regions of interest (ROIs) for all PET images. These features were then concatenated for feature selection, and an RPM model was constructed and validated on the ADNI dataset. In addition, we used clinical data and the routine semiquantification index (standard uptake value ratio, SUVR) to establish clinical and SUVR Cox models for further comparison. FDG images from local hospitals were used to explore RPM performance in a separate cohort of individuals with healthy controls and different cognitive levels (a complete AD continuum). Finally, correlation analysis was conducted between the radiomic biomarkers and neuropsychological assessments.ResultsThe experimental results showed that the predictive performance of the RPM Cox model was better than that of other Cox models. In the validation dataset, Harrell’s consistency coefficient of the RPM model was 0.703 ± 0.002, while those of the clinical and SUVR models were 0.632 ± 0.006 and 0.683 ± 0.009, respectively. Moreover, most crucial imaging biomarkers were significantly different at different cognitive stages and significantly correlated with cognitive disease severity.ConclusionThe preliminary results demonstrated that the developed RPM approach has the potential to monitor progression in high-risk populations with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YaoJason关注了科研通微信公众号
刚刚
佳语妍说完成签到,获得积分10
刚刚
鲤鱼访天发布了新的文献求助10
1秒前
2595756226发布了新的文献求助10
2秒前
Yanping完成签到,获得积分10
2秒前
Orange应助里希希采纳,获得10
3秒前
3秒前
pp发布了新的文献求助10
3秒前
4秒前
4秒前
Xy完成签到 ,获得积分10
5秒前
去玩儿完成签到,获得积分20
5秒前
虚拟的南霜完成签到,获得积分10
5秒前
一一发布了新的文献求助10
8秒前
12发布了新的文献求助10
8秒前
mgg完成签到,获得积分10
9秒前
冷酷沛柔完成签到,获得积分10
9秒前
咸鱼发布了新的文献求助10
9秒前
10秒前
烟花应助2595756226采纳,获得10
11秒前
天天快乐应助欣慰幻柏采纳,获得10
12秒前
13秒前
nlwsp完成签到 ,获得积分10
13秒前
Cookie225499发布了新的文献求助10
13秒前
djshao应助xuli21315采纳,获得30
13秒前
15秒前
感动芷珊完成签到 ,获得积分10
16秒前
18秒前
XU博士发布了新的文献求助10
18秒前
裴崎完成签到,获得积分10
18秒前
orixero应助mhb115采纳,获得10
18秒前
鲤鱼访天完成签到,获得积分10
19秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
zhaobo发布了新的文献求助10
22秒前
Zenia应助lana采纳,获得10
22秒前
华仔应助张靖雯采纳,获得10
24秒前
中和皇极应助my123采纳,获得10
24秒前
脑洞疼应助my123采纳,获得10
24秒前
Hello应助my123采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601653
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847515
捐赠科研通 4681645
什么是DOI,文献DOI怎么找? 2539451
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471299