亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer’s disease

无线电技术 医学 疾病 认知障碍 内科学 认知 阿尔茨海默病 放射科 精神科
作者
Jiehui Jiang,Min Wang,Ian Alberts,Xiaoming Sun,Taoran Li,Axel Rominger,Chuantao Zuo,Ying Han,Kuangyu Shi,for the Alzheimer’s Disease Neuroim Initiative
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (7): 2163-2173 被引量:38
标识
DOI:10.1007/s00259-022-05687-y
摘要

BackgroundPredicting the risk of disease progression from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) has important clinical significance. This study aimed to provide a personalized MCI-to-AD conversion prediction via radiomics-based predictive modelling (RPM) with multicenter 18F-fluorodeoxyglucose positron emission tomography (FDG PET) data.MethodFDG PET and neuropsychological data of 884 subjects were collected from Huashan Hospital, Xuanwu Hospital, and from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. First, 34,400 radiomic features were extracted from the 80 regions of interest (ROIs) for all PET images. These features were then concatenated for feature selection, and an RPM model was constructed and validated on the ADNI dataset. In addition, we used clinical data and the routine semiquantification index (standard uptake value ratio, SUVR) to establish clinical and SUVR Cox models for further comparison. FDG images from local hospitals were used to explore RPM performance in a separate cohort of individuals with healthy controls and different cognitive levels (a complete AD continuum). Finally, correlation analysis was conducted between the radiomic biomarkers and neuropsychological assessments.ResultsThe experimental results showed that the predictive performance of the RPM Cox model was better than that of other Cox models. In the validation dataset, Harrell’s consistency coefficient of the RPM model was 0.703 ± 0.002, while those of the clinical and SUVR models were 0.632 ± 0.006 and 0.683 ± 0.009, respectively. Moreover, most crucial imaging biomarkers were significantly different at different cognitive stages and significantly correlated with cognitive disease severity.ConclusionThe preliminary results demonstrated that the developed RPM approach has the potential to monitor progression in high-risk populations with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助Czl采纳,获得10
9秒前
11秒前
瘪良科研发布了新的文献求助10
18秒前
Orange应助bird采纳,获得10
19秒前
21秒前
rrr完成签到 ,获得积分10
24秒前
26秒前
27秒前
瘪良科研完成签到,获得积分10
33秒前
Czl发布了新的文献求助10
33秒前
史前巨怪完成签到,获得积分0
50秒前
51秒前
52秒前
果酱完成签到,获得积分10
55秒前
称心的高丽完成签到 ,获得积分10
1分钟前
树脂小柴发布了新的文献求助10
1分钟前
1分钟前
Sandy发布了新的文献求助10
1分钟前
树脂小柴完成签到,获得积分10
1分钟前
1分钟前
蘇q完成签到 ,获得积分10
1分钟前
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
2分钟前
yiyayaxiaojie发布了新的文献求助10
2分钟前
孤独蘑菇完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
舒心的朝雪完成签到 ,获得积分10
2分钟前
漠然完成签到,获得积分10
2分钟前
2分钟前
zbj662完成签到 ,获得积分10
2分钟前
大包鸡完成签到 ,获得积分10
2分钟前
BowieHuang应助Pk采纳,获得10
3分钟前
蜜HHH完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
丘奇完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723535
求助须知:如何正确求助?哪些是违规求助? 5278836
关于积分的说明 15298864
捐赠科研通 4871973
什么是DOI,文献DOI怎么找? 2616415
邀请新用户注册赠送积分活动 1566241
关于科研通互助平台的介绍 1523131