Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine

环境科学 中国 农业 植被(病理学) 索引(排版) 自然地理学 地理 医学 计算机科学 万维网 病理 考古
作者
Xiaoyang Zhao,Haoming Xia,Baoying Liu,Wenzhe Jiao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (7): 1570-1570 被引量:25
标识
DOI:10.3390/rs14071570
摘要

As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R2 = 0.9606, p < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R2 = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (p > 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and p values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and p values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
慕青应助王KKK采纳,获得10
1秒前
1秒前
kkk发布了新的文献求助10
1秒前
更胜一筹发布了新的文献求助10
1秒前
11发布了新的文献求助40
1秒前
Tengami发布了新的文献求助10
1秒前
ziyue发布了新的文献求助10
2秒前
哈哈哈哈哈哈完成签到,获得积分10
2秒前
天天下雨发布了新的文献求助10
2秒前
大个应助wanghuiyanyx采纳,获得10
3秒前
3秒前
3秒前
GEMINI完成签到,获得积分10
3秒前
靓丽衫完成签到 ,获得积分10
3秒前
XU完成签到,获得积分10
4秒前
chen完成签到,获得积分10
4秒前
CipherSage应助叶液采纳,获得10
5秒前
宋德宇发布了新的文献求助20
5秒前
5秒前
6秒前
6秒前
yyf完成签到,获得积分10
6秒前
我是老大应助GEMINI采纳,获得10
7秒前
王蕊发布了新的文献求助10
7秒前
guyanlong完成签到,获得积分10
7秒前
joleisalau发布了新的文献求助10
7秒前
天天快乐应助WY采纳,获得10
7秒前
buno应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
Zx_1993应助科研通管家采纳,获得20
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
陈椅子的求学完成签到,获得积分10
8秒前
柏林寒冬应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836