Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine

环境科学 中国 农业 植被(病理学) 索引(排版) 自然地理学 地理 医学 计算机科学 万维网 病理 考古
作者
Xiaoyang Zhao,Haoming Xia,Baoying Liu,Wenzhe Jiao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (7): 1570-1570 被引量:25
标识
DOI:10.3390/rs14071570
摘要

As a common natural disaster, drought can significantly affect the agriculture productivity and human life. Compared to Southeast China, Northwest China is short of water year-round and is the most frequent drought disaster area in China. Currently, there are still many controversial issues in drought monitoring of Northwest China in recent decades. To further understand the causes of changes in drought in Northwest China, we chose Shaanxi, Gansu, and Ningxia provinces (SGN) as our study area. We compared the spatiotemporal characteristics of drought intensity and frequency in Northwest China from 2003 to 2020 showed by the Standardized Precipitation Index (SPI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Vegetation Supply Water Index (NVSWI), Soil Moisture Condition Index (SMCI), and Soil Moisture Agricultural Drought Index (SMADI). All of these indices showed a wetting trend in the SGN area from 2003 to 2020. The wetting trend of the VCI characterization is the most obvious (R2 = 0.9606, p < 0.05): During the period 2003–2020, the annual average value of the VCI in the SGN region increased from 28.33 to 71.61, with a growth rate of 153.57%. The TCI showed the weakest trend of wetting (R2 = 0.0087), with little change in the annual average value in the SGN region. The results of the Mann–Kendall trend test of the TCI indicated that the SGN region experienced a non-significant (p > 0.05) wetting trend between 2003 and 2020. To explore the effectiveness of different drought indices, we analyzed the Pearson correlation between each drought index and the Palmer Drought Severity Index (PDSI). The PDSI can not only consider the current water supply and demand situation but also consider the impact of the previous dry and wet conditions and their duration on the current drought situation. Using the PDSI as a reference, we can effectively verify the performance of each drought index. SPI-12 showed the best correlation with PDSI, with R values greater than 0.6 in almost all regions and p values less than 0.05 within one-half of the study area. SMADI had the weakest correlation with PDSI, with R values ranging −0.4~−0.2 and p values greater than 0.05 in almost all regions. The results of this study clarified the wetting trend in the SGN region from 2003 to 2020 and effectively analyzed the differences in each drought index. The frequency, duration, and severity of drought are continuously reduced; this helps us to have a more comprehensive understanding of the changes in recent decades and is of significance for the in-depth study of drought disasters in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Akim应助科研通管家采纳,获得10
2秒前
ucas应助科研通管家采纳,获得10
2秒前
2秒前
tiptip应助科研通管家采纳,获得10
2秒前
zoe发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
azntyrvt应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
ucas应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Joel发布了新的文献求助10
2秒前
ding应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
asd应助科研通管家采纳,获得30
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
ucas应助科研通管家采纳,获得10
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
tiptip应助科研通管家采纳,获得10
2秒前
沟壑发布了新的文献求助10
2秒前
Jared应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
冷酷孤风完成签到,获得积分10
3秒前
asd应助科研通管家采纳,获得30
3秒前
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
azntyrvt应助科研通管家采纳,获得10
3秒前
芊芊完成签到 ,获得积分10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002