重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Change in positron emission tomography perfusion imaging quality with a data-driven motion correction algorithm

医学 核医学 图像质量 人工智能 运动(物理) 正电子发射断层摄影术 算法 心肌灌注成像 运动场 心脏成像 计算机视觉 放射科 灌注 数学 计算机科学 图像(数学)
作者
Yushui Han,Ahmed Ibrahim Ahmed,Charles Hayden,Aaron K. Jung,Jean Michel Saad,Bruce Spottiswoode,Faisal Nabi,Mouaz H. Al‐Mallah
出处
期刊:Journal of Nuclear Cardiology [Springer Nature]
卷期号:29 (6): 3426-3431 被引量:3
标识
DOI:10.1007/s12350-021-02902-5
摘要

Cardiac motion frequently reduces the interpretability of PET images. This study utilized a prototype data-driven motion correction (DDMC) algorithm to generate corrected images and compare DDMC images with non-corrected images (NMC) to evaluate image quality and change of perfusion defect size and severity. Rest and stress images with NMC and DDMC from 40 consecutive patients with motion were rated by 2 blinded investigators on a 4-point visual ordinal scale (0: minimal motion; 1: mild motion; 2: moderate motion; 3: severe motion/uninterpretable). Motion was also quantified using Dwell Fraction, which is the fraction of time the motion vector shows the heart to be within 6 mm of the corrected position and was derived from listmode data of NMC images. Minimal motion was seen in 15% of patients, while 40%, 30%, and 15% of patients had mild moderate and severe motion, respectively. All corrected images showed an improvement in quality and were interpretable after processing. This was confirmed by a significant correlation (Spearman's correlation coefficient 0.626, P < .001) between machine measurement of motion quantification and physician interpretation. The novel DDMC algorithm improved quality of cardiac PET images with motion. Correlation between machine measurement of motion quantification and physician interpretation was significant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助自由的幻悲采纳,获得30
1秒前
1秒前
561424175完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
知其荣发布了新的文献求助10
2秒前
搞怪飞机发布了新的文献求助10
2秒前
肥仔龙发布了新的文献求助10
2秒前
yin发布了新的文献求助10
3秒前
Junyi发布了新的文献求助10
3秒前
阿斯顿发布了新的文献求助10
3秒前
CipherSage应助Sandy采纳,获得10
3秒前
4秒前
小二郎应助啾啾采纳,获得10
4秒前
4秒前
哎哟我去完成签到,获得积分10
4秒前
科研通AI2S应助李浩然采纳,获得10
4秒前
4秒前
香蕉觅云应助半糖微辣采纳,获得10
4秒前
4秒前
5秒前
CipherSage应助GC_AIBio采纳,获得10
5秒前
5秒前
chen发布了新的文献求助10
6秒前
Ting完成签到,获得积分10
6秒前
yyds发布了新的文献求助10
6秒前
熙梓日记完成签到,获得积分10
6秒前
SciGPT应助Lu采纳,获得10
6秒前
可爱的函函应助qianlu采纳,获得30
6秒前
7秒前
7秒前
7秒前
赵景豪发布了新的文献求助30
8秒前
虚幻的不评完成签到,获得积分10
8秒前
8秒前
9秒前
哒哒完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516