生物炭
化学
热解
磷
环境化学
磷酸盐
碳纤维
金属
复合数
材料科学
有机化学
复合材料
作者
Yingbing Luo,Zhaopeng Li,Huacheng Xu,Xiaoyun Xu,Hao Qiu,Xinde Cao,Ling Zhao
标识
DOI:10.1016/j.scitotenv.2022.154845
摘要
As a porous and carbon material, biochar is focused on respectively in sequestrating carbon and stabilizing metals in soil, while few studies attempted to design biochar for simultaneously achieving these two targets. This study proposed to produce phosphorus-composite biochar for synchronously enhancing carbon sequestration and heavy metals immobilization. Two phosphorus materials from tailings, Ca(H2PO4)2 and Ca5(PO4)3(OH), were selected as modifier to load into biomass prior to pyrolysis. Results showed that incorporating P not only increased pyrolytic C retention in biochar by 36.1-50.1%, but also obtained biochar with higher stability by chemically formation of COP, C-PO3 and C2-PO2. After 90-day incubation with soil, more C was sequestrated in the P-biochar amended soil (59.6-67.0%) than those pristine biochar (43.2-46.6%). Highly soluble Ca(H2PO4)2 was more efficient than Ca5(PO4)3(OH) in this regard. Meanwhile, these P-composite biochar exhibited more Pb/Cd immobilization (31.3-92.3%) compared with the pristine biochar (9.5-47.2%), which was mainly due to the formation of stable precipitates Pb5(PO4)3Cl and Cd3(PO4)2, especially for Ca5(PO4)3(OH) modification. Additionally, P-composite biochar "intelligently" altered soil microbial community, i.e., they suppressed Actinobacteria proliferation, which is correlated to carbon degradation, while promoted Proteobacteria growth, facilitating phosphate dissolution for ready reaction with heavy metals to form precipitate, benefiting the Pb and Cd immobilization. A dual functions biochar was engineered via simply loading phosphorous prior to pyrolysis and simultaneously enhanced carbon sequestration and heavy metal immobilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI