Evidence-aware Fake News Detection with Graph Neural Networks

计算机科学 冗余(工程) 注意力网络 图形 光学(聚焦) 情报检索 互联网 依赖关系(UML) 依赖关系图 人工智能 数据科学 理论计算机科学 机器学习 万维网 物理 光学 操作系统
作者
Weizhi Xu,Junfei Wu,Qiang Liu,Shu Wu,Liang Wang
标识
DOI:10.1145/3485447.3512122
摘要

The prevalence and perniciousness of fake news has been a critical issue on the Internet, which stimulates the development of automatic fake news detection in turn. In this paper, we focus on the evidence-based fake news detection, where several evidences are utilized to probe the veracity of news (i.e., a claim). Most previous methods first employ sequential models to embed the semantic information and then capture the claim-evidence interaction based on different attention mechanisms. Despite their effectiveness, they still suffer from two main weaknesses. Firstly, due to the inherent drawbacks of sequential models, they fail to integrate the relevant information that is scattered far apart in evidences for veracity checking. Secondly, they neglect much redundant information contained in evidences that may be useless or even harmful. To solve these problems, we propose a unified Graph-based sEmantic sTructure mining framework, namely GET in short. Specifically, different from the existing work that treats claims and evidences as sequences, we model them as graph-structured data and capture the long-distance semantic dependency among dispersed relevant snippets via neighborhood propagation. After obtaining contextual semantic information, our model reduces information redundancy by performing graph structure learning. Finally, the fine-grained semantic representations are fed into the downstream claim-evidence interaction module for predictions. Comprehensive experiments have demonstrated the superiority of GET over the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kuta发布了新的文献求助10
3秒前
曹宏达发布了新的文献求助10
3秒前
fd163c应助DengLingjie采纳,获得30
3秒前
lm完成签到 ,获得积分10
4秒前
Meddy完成签到,获得积分20
5秒前
隐形曼青应助机智的誉采纳,获得10
5秒前
乐观保温杯完成签到,获得积分10
6秒前
6秒前
8秒前
9秒前
今后应助迁湾采纳,获得10
10秒前
12秒前
有米饭没完成签到 ,获得积分10
14秒前
五花肉发布了新的文献求助10
15秒前
15秒前
17秒前
18秒前
18秒前
19秒前
机智的誉发布了新的文献求助10
19秒前
明月朝灯完成签到,获得积分20
19秒前
感性的芹菜完成签到,获得积分10
20秒前
思源应助科研通管家采纳,获得10
20秒前
20秒前
烟花应助科研通管家采纳,获得10
20秒前
自然归尘完成签到 ,获得积分10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得20
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010343
求助须知:如何正确求助?哪些是违规求助? 3550209
关于积分的说明 11305256
捐赠科研通 3284663
什么是DOI,文献DOI怎么找? 1810786
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451