Evidence-aware Fake News Detection with Graph Neural Networks

计算机科学 冗余(工程) 注意力网络 图形 光学(聚焦) 情报检索 互联网 依赖关系(UML) 依赖关系图 人工智能 数据科学 理论计算机科学 机器学习 万维网 物理 光学 操作系统
作者
Weizhi Xu,Junfei Wu,Qiang Liu,Shu Wu,Liang Wang
标识
DOI:10.1145/3485447.3512122
摘要

The prevalence and perniciousness of fake news has been a critical issue on the Internet, which stimulates the development of automatic fake news detection in turn. In this paper, we focus on the evidence-based fake news detection, where several evidences are utilized to probe the veracity of news (i.e., a claim). Most previous methods first employ sequential models to embed the semantic information and then capture the claim-evidence interaction based on different attention mechanisms. Despite their effectiveness, they still suffer from two main weaknesses. Firstly, due to the inherent drawbacks of sequential models, they fail to integrate the relevant information that is scattered far apart in evidences for veracity checking. Secondly, they neglect much redundant information contained in evidences that may be useless or even harmful. To solve these problems, we propose a unified Graph-based sEmantic sTructure mining framework, namely GET in short. Specifically, different from the existing work that treats claims and evidences as sequences, we model them as graph-structured data and capture the long-distance semantic dependency among dispersed relevant snippets via neighborhood propagation. After obtaining contextual semantic information, our model reduces information redundancy by performing graph structure learning. Finally, the fine-grained semantic representations are fed into the downstream claim-evidence interaction module for predictions. Comprehensive experiments have demonstrated the superiority of GET over the state-of-the-arts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观生活发布了新的文献求助10
刚刚
chenghuan完成签到,获得积分20
1秒前
万能图书馆应助Zshen采纳,获得10
2秒前
chaosyw完成签到,获得积分10
2秒前
坚守初心完成签到,获得积分20
3秒前
xhj666完成签到,获得积分10
3秒前
英俊的铭应助Bobo采纳,获得30
3秒前
sure完成签到 ,获得积分10
3秒前
向前看发布了新的文献求助10
3秒前
clamon完成签到,获得积分10
4秒前
yun关注了科研通微信公众号
5秒前
醉酒笑红尘完成签到,获得积分10
5秒前
高兴电脑完成签到,获得积分10
6秒前
不知完成签到 ,获得积分10
8秒前
烟花应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
HJJHJH应助科研通管家采纳,获得30
9秒前
爱吃姜的面条完成签到,获得积分10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
Akim应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
科目三应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
小青椒应助科研通管家采纳,获得50
10秒前
zqgxiangbiye完成签到,获得积分10
11秒前
Stella应助科研通管家采纳,获得10
11秒前
11秒前
深情安青应助科研通管家采纳,获得30
11秒前
打打应助骆西西采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293