Evidence-aware Fake News Detection with Graph Neural Networks

计算机科学 冗余(工程) 注意力网络 图形 光学(聚焦) 情报检索 互联网 依赖关系(UML) 依赖关系图 人工智能 数据科学 理论计算机科学 机器学习 万维网 物理 光学 操作系统
作者
Weizhi Xu,Junfei Wu,Qiang Liu,Shu Wu,Yunhong Wang
标识
DOI:10.1145/3485447.3512122
摘要

The prevalence and perniciousness of fake news has been a critical issue on the Internet, which stimulates the development of automatic fake news detection in turn. In this paper, we focus on the evidence-based fake news detection, where several evidences are utilized to probe the veracity of news (i.e., a claim). Most previous methods first employ sequential models to embed the semantic information and then capture the claim-evidence interaction based on different attention mechanisms. Despite their effectiveness, they still suffer from two main weaknesses. Firstly, due to the inherent drawbacks of sequential models, they fail to integrate the relevant information that is scattered far apart in evidences for veracity checking. Secondly, they neglect much redundant information contained in evidences that may be useless or even harmful. To solve these problems, we propose a unified Graph-based sEmantic sTructure mining framework, namely GET in short. Specifically, different from the existing work that treats claims and evidences as sequences, we model them as graph-structured data and capture the long-distance semantic dependency among dispersed relevant snippets via neighborhood propagation. After obtaining contextual semantic information, our model reduces information redundancy by performing graph structure learning. Finally, the fine-grained semantic representations are fed into the downstream claim-evidence interaction module for predictions. Comprehensive experiments have demonstrated the superiority of GET over the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alltoowell完成签到,获得积分0
刚刚
小旺啦完成签到 ,获得积分10
刚刚
打打应助欣欣子采纳,获得10
1秒前
1秒前
高兴可乐发布了新的文献求助10
1秒前
2秒前
Qiancheni完成签到,获得积分10
2秒前
Vintage发布了新的文献求助10
2秒前
一一应助不安毛豆采纳,获得20
2秒前
wanci应助默默的白梅采纳,获得10
2秒前
3秒前
VDC应助Leucalypt采纳,获得30
3秒前
3秒前
一一发布了新的文献求助10
3秒前
小星云发布了新的文献求助20
4秒前
很在乎发布了新的文献求助10
4秒前
碧蓝梦芝完成签到,获得积分10
4秒前
光耀之新星完成签到,获得积分10
5秒前
高高发布了新的文献求助10
5秒前
hyfwkd完成签到,获得积分10
5秒前
耍酷芙蓉发布了新的文献求助10
5秒前
晖晖shining完成签到 ,获得积分10
5秒前
风华完成签到,获得积分10
6秒前
机智傀斗完成签到,获得积分10
6秒前
玉兰完成签到,获得积分10
8秒前
FYJY应助陈陈陈采纳,获得20
8秒前
8秒前
MIRROR完成签到 ,获得积分10
9秒前
谦让小松鼠完成签到 ,获得积分10
9秒前
Endlessway应助123采纳,获得10
9秒前
不安毛豆完成签到,获得积分10
9秒前
典雅巧凡发布了新的文献求助10
9秒前
11秒前
liudw完成签到,获得积分10
11秒前
张璋完成签到,获得积分10
11秒前
烟花应助高高采纳,获得10
12秒前
miao发布了新的文献求助10
12秒前
爆米花应助八格牙路采纳,获得10
12秒前
小霞完成签到 ,获得积分10
13秒前
14秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3220636
求助须知:如何正确求助?哪些是违规求助? 2869308
关于积分的说明 8165363
捐赠科研通 2536122
什么是DOI,文献DOI怎么找? 1368656
科研通“疑难数据库(出版商)”最低求助积分说明 645253
邀请新用户注册赠送积分活动 618820