High Resolution of Plasmonic Resonance Scattering Imaging with Deep Learning

衍射 可制造性设计 等离子体子 光学 化学 散射 分辨率(逻辑) 显微镜 光散射 等离子纳米粒子 人工智能 计算机科学 物理 机械工程 工程类
作者
Mingke Song,Yun Peng,Hui Liu,Ping Hu,Cheng Zhi Huang,Jun Zhou
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (11): 4610-4616 被引量:3
标识
DOI:10.1021/acs.analchem.1c04330
摘要

The dark-field microscopy (DFM) imaging technology has the advantage of a high signal-to-noise ratio, and it is often used for real-time monitoring of plasmonic resonance scattering and biological imaging at the single-nanoparticle level. Due to the limitation of the optical diffraction limit, it is still a challenging task to accurately distinguish two or more nanoparticles whose distance is less than the diffraction limit. Here, we propose a computational strategy based on a deep learning framework (NanoNet), which will realize the effective segmentation of the scattered light spots in diffraction-limited DFM images and obtain high-resolution plasmonic light scattering imaging. A small data set of DFM and the corresponding scanning electron microscopy (SEM) image pairs are used to learn for obtaining a highly resolved semantic imaging model using NanoNet, and thus highly resolved DFM images matching the resolution of those acquired using SEM can be obtained. Our method has the ability to transform diffraction-limited DFM images to highly resolved ones without adding a complex optical system. As a proof of concept, a highly resolved DFM image of living cells through the NanoNet technique is successfully made, opening up a new avenue for high-resolution optical nanoscopic imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalalla发布了新的文献求助30
1秒前
melon发布了新的文献求助80
1秒前
图苏完成签到,获得积分10
1秒前
乐乐应助紫陌采纳,获得10
1秒前
哈哈怪发布了新的文献求助10
2秒前
4秒前
6秒前
6秒前
8秒前
chrysophoron发布了新的文献求助10
12秒前
清逸完成签到 ,获得积分10
13秒前
13秒前
kangkang完成签到,获得积分10
15秒前
Raino完成签到 ,获得积分10
15秒前
16秒前
16秒前
chenb发布了新的文献求助10
17秒前
orixero应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
曾经念真应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
大胆绮应助科研通管家采纳,获得10
18秒前
自由一一完成签到,获得积分20
19秒前
曾经念真应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
19秒前
曾经念真应助科研通管家采纳,获得10
19秒前
善学以致用应助干将莫邪采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
19秒前
Profeto应助科研通管家采纳,获得10
19秒前
19秒前
Akim应助科研通管家采纳,获得10
19秒前
20秒前
雨天发布了新的文献求助10
20秒前
21秒前
24秒前
香蕉觅云应助啊啊啊啊采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724