A feature selection method for classification based on ensemble of penalized logistic models

特征选择 人工智能 支持向量机 弹性网正则化 随机森林 可解释性 模式识别(心理学) 随机子空间法 计算机科学 分类器(UML) Lasso(编程语言) 机器学习 集成学习 统计分类 数据挖掘 万维网
作者
Musarrat Ijaz,Asma Gul,Zahid Asghar
出处
期刊:Communications in Statistics - Simulation and Computation [Informa]
卷期号:: 1-13
标识
DOI:10.1080/03610918.2022.2044054
摘要

Classification accuracy of any classifier can be enhanced by performing the classification on selected informative features. Features selection methods are generally approached for the purpose. Combining multiple models known as ensemble method emerged as prominent method for achieving classification accuracy. These techniques can be considered for variable selection for accuracy gain and interpretability of a classifier. we propose an ensemble of penalized logistic models (EPLM) for feature selection. EPLM employs Lasso, adaptive Lasso and elastic net for feature selection. EPLM is applied to high dimensional microarray data sets and simulated data sets. State-of-the-art classifiers, Lasso, Random Forest (RF), Support Vector Machine (SVM) and K- Nearest Neighbors (KNN) are employed for assessment of EPLM. Experimental comparisons reveal that significant improvement in classification accuracy is achieved for all the classifiers considered. The proposed method is also compared to the Ensemble of subset of KNN classifiers (ESKNN). In comparison to ESKNN EPLM achieves better performance accuracy for all the classifiers on simulated and microarray data sets. Moreover, it is also observed that EPLM has selected significantly smaller number of features as compared to the full feature set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安安完成签到 ,获得积分10
2秒前
chen发布了新的文献求助10
3秒前
zhouyunan完成签到,获得积分10
3秒前
zhzzhz发布了新的文献求助10
4秒前
cocolu应助黄文怡采纳,获得10
4秒前
5秒前
Ava应助勤奋的汉堡采纳,获得10
6秒前
粗犷的灵松完成签到,获得积分10
6秒前
zxh发布了新的文献求助10
10秒前
111完成签到,获得积分20
10秒前
Ava应助不敢装睡采纳,获得10
11秒前
寒凌完成签到,获得积分10
12秒前
归海含烟完成签到,获得积分10
12秒前
12秒前
可爱的函函应助chen采纳,获得10
12秒前
树枝完成签到,获得积分10
13秒前
sansronds完成签到,获得积分10
13秒前
hoongyan完成签到 ,获得积分10
14秒前
柒柒发布了新的文献求助10
14秒前
彭于晏应助自由的千易采纳,获得10
15秒前
NexusExplorer应助rpe采纳,获得10
15秒前
充电宝应助lisa采纳,获得10
15秒前
Vivilla完成签到,获得积分10
16秒前
曾经可乐完成签到 ,获得积分10
17秒前
卡卡罗特发布了新的文献求助10
17秒前
18秒前
Shadow完成签到 ,获得积分10
19秒前
songge完成签到,获得积分10
19秒前
20秒前
李健应助Phantom1234采纳,获得10
22秒前
科研通AI5应助WNL采纳,获得10
22秒前
23秒前
chen完成签到,获得积分10
23秒前
冰勾板勾发布了新的文献求助10
23秒前
彭于晏应助xzn1123采纳,获得10
24秒前
CipherSage应助黄文怡采纳,获得10
24秒前
25秒前
26秒前
xlz110完成签到,获得积分10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479266
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116103
捐赠科研通 2761731
什么是DOI,文献DOI怎么找? 1515477
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699931