吸附
化学
纤维素
氢键
位阻效应
动力学
分子
立体化学
有机化学
物理
量子力学
作者
Zhen Dong,Junzi Liu,Di Wen,Maolin Zhai,Long Zhao
标识
DOI:10.1016/j.jhazmat.2022.128728
摘要
Technetium-99 (99Tc) is a long-lived radioactive nuclide that poses great threat to environment, hence selective removal of 99Tc from aquatic system is always an issue. Aminomethylpyridine (AMP) equipped with pyridine and amino, is a promising receptor for TcO4- and its surrogate ReO4-, thus it is of interest to explore and understand the structure-properties relationship of ReO4- adsorption related to n-AMP structure that differ in amino methyl position. In this work, three n-AMP functionalized cellulose microspheres (n-AMPR, n = 2, 3, 4) were synthesized and employed for TcO4-/ReO4- uptake. The effect of aminomethyl position on adsorption properties of n-AMPR for ReO4- were investigated and compared. Adsorption kinetics and adsorption isotherm showed that adsorption speed and adsorption capacity were in order of 3-AMPR > 2-AMPR > 4-AMPR. DFT calculation verified that the adsorption of ReO4- by n-AMPR was attributed to electrostatic interaction and hydrogen bonding interaction, the order of adsorption abilities of n-AMPR was due to that steric effect and hydrogen bond collaborated in stabilizing n-AMPR-ReO4- complexes. The column experiments demonstrated that 3-AMPR can be selectively remove ReO4- from simulated groundwater. More importantly, 99Tc column experiments showed that 3-AMPR had a better ability for actual radioactive TcO4-.
科研通智能强力驱动
Strongly Powered by AbleSci AI