Applying Different Artificial Intelligence Techniques in Dynamic Poisson’s Ratio Prediction Using Drilling Parameters

支持向量机 钻探 计算机科学 灵敏度(控制系统) 随机森林 泊松分布 机器学习 数据挖掘 算法 人工智能 统计 数学 工程类 机械工程 电子工程
作者
Osama Siddig,Hany Gamal,Salaheldin Elkatatny,Abdulazeez Abdulraheem
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASM International]
卷期号:144 (7) 被引量:23
标识
DOI:10.1115/1.4052185
摘要

Abstract Rock geomechanical properties impact wellbore stability, drilling performance, estimation of in situ stresses, and design of hydraulic fracturing. One of these properties is Poisson’s ratio which is measured from lab testing or derived from well logs, the former is costly, time-consuming, and does not provide continuous information, and the latter may not be always available. An alternative prediction technique from drilling parameters in real time is proposed in this paper. The novel contribution of this approach is that the drilling data is always available and obtained from the first encounter with the well. These parameters are easily obtainable from drilling rig sensors such as rate of penetration (ROP), weight on bit (WOB), and torque. Three machine-learning methods were utilized: support vector machine (SVM), functional network (FN), and random forest (RF). Dataset (2905 data points) from one well were used to build the models, while a dataset from another well with 2912 data points was used to validate the constructed models. Both wells have diverse lithology consists of carbonate, shale, and sandstone. To ensure optimal accuracy, sensitivity and optimization tests on various parameters in each algorithm were performed. The three machine-learning tools provided good estimations; however, SVM and RF yielded close results, with correlation coefficients of 0.99 and the average absolute percentage error (AAPE) values were mostly less than 1%. While in FN the outcomes were less efficient with correlation coefficients of 0.92 and AAPE around 3.8%. Accordingly, the presented approach provides an effective tool for Poisson's ratio prediction on a real-time basis at no additional expense. In addition, the same approach could be used in other rock mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z小姐完成签到 ,获得积分10
刚刚
温暖的开山完成签到,获得积分10
1秒前
1秒前
走走完成签到,获得积分10
1秒前
W昂发布了新的文献求助10
2秒前
易道聚焦发布了新的文献求助10
2秒前
2秒前
贝卓飞完成签到,获得积分10
3秒前
hhcosy完成签到,获得积分10
3秒前
小吴同学完成签到,获得积分10
4秒前
4秒前
英勇的沛春完成签到 ,获得积分10
4秒前
CWJ完成签到,获得积分10
4秒前
SciGPT应助端端采纳,获得10
4秒前
jiezi1985发布了新的文献求助10
5秒前
刘师兄吧发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
太好笑关注了科研通微信公众号
5秒前
热孜宛古丽完成签到,获得积分20
6秒前
周大福完成签到 ,获得积分10
6秒前
搜集达人应助科研小乞丐采纳,获得10
7秒前
orixero应助Shaw采纳,获得10
8秒前
卿君发布了新的文献求助20
8秒前
9秒前
科研通AI6应助小丸子采纳,获得10
9秒前
田様应助蓝风铃采纳,获得30
9秒前
9秒前
胡三岁应助michael采纳,获得10
9秒前
wang完成签到,获得积分20
10秒前
li发布了新的文献求助10
10秒前
香蕉觅云应助wyf采纳,获得10
10秒前
Jasper应助jansorchen采纳,获得10
11秒前
Xiaosi完成签到,获得积分10
11秒前
啊这应助北国之海采纳,获得10
11秒前
马克发布了新的文献求助10
12秒前
Small-violet发布了新的文献求助10
13秒前
二十八完成签到 ,获得积分10
13秒前
浮晨完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363