Applying Different Artificial Intelligence Techniques in Dynamic Poisson’s Ratio Prediction Using Drilling Parameters

支持向量机 钻探 计算机科学 灵敏度(控制系统) 随机森林 泊松分布 机器学习 数据挖掘 算法 人工智能 统计 数学 工程类 机械工程 电子工程
作者
Osama Sidddig,Hany Gamal,Salaheldin Elkatatny,Abdulazeez Abdulraheem
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASM International]
卷期号:144 (7) 被引量:15
标识
DOI:10.1115/1.4052185
摘要

Abstract Rock geomechanical properties impact wellbore stability, drilling performance, estimation of in situ stresses, and design of hydraulic fracturing. One of these properties is Poisson’s ratio which is measured from lab testing or derived from well logs, the former is costly, time-consuming, and does not provide continuous information, and the latter may not be always available. An alternative prediction technique from drilling parameters in real time is proposed in this paper. The novel contribution of this approach is that the drilling data is always available and obtained from the first encounter with the well. These parameters are easily obtainable from drilling rig sensors such as rate of penetration (ROP), weight on bit (WOB), and torque. Three machine-learning methods were utilized: support vector machine (SVM), functional network (FN), and random forest (RF). Dataset (2905 data points) from one well were used to build the models, while a dataset from another well with 2912 data points was used to validate the constructed models. Both wells have diverse lithology consists of carbonate, shale, and sandstone. To ensure optimal accuracy, sensitivity and optimization tests on various parameters in each algorithm were performed. The three machine-learning tools provided good estimations; however, SVM and RF yielded close results, with correlation coefficients of 0.99 and the average absolute percentage error (AAPE) values were mostly less than 1%. While in FN the outcomes were less efficient with correlation coefficients of 0.92 and AAPE around 3.8%. Accordingly, the presented approach provides an effective tool for Poisson's ratio prediction on a real-time basis at no additional expense. In addition, the same approach could be used in other rock mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
StarryYY发布了新的文献求助10
1秒前
2秒前
2秒前
irisjlj完成签到,获得积分10
3秒前
百步发布了新的文献求助10
3秒前
hczong发布了新的文献求助10
4秒前
王贺朋发布了新的文献求助10
5秒前
5秒前
小二郎应助子车翠霜采纳,获得10
5秒前
6秒前
Philiadddd发布了新的文献求助10
6秒前
6秒前
懒羊羊关注了科研通微信公众号
6秒前
传奇3应助Yuanyuan采纳,获得10
7秒前
jia完成签到,获得积分10
7秒前
杨衡发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
somin应助niulugai采纳,获得10
9秒前
向日葵完成签到,获得积分10
9秒前
阴晴完成签到,获得积分10
10秒前
Jinman完成签到,获得积分10
10秒前
叶暖发布了新的文献求助10
10秒前
JamesPei应助研友_24789采纳,获得10
12秒前
付艳完成签到,获得积分10
12秒前
資鼒完成签到,获得积分10
12秒前
12秒前
阴晴发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
刘匡逸发布了新的文献求助20
14秒前
14秒前
15秒前
付艳发布了新的文献求助10
15秒前
完美世界应助阳光凡儿采纳,获得30
15秒前
hyuuu完成签到,获得积分10
15秒前
天天快乐应助天真茗采纳,获得10
16秒前
小宋完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958929
求助须知:如何正确求助?哪些是违规求助? 3505199
关于积分的说明 11122925
捐赠科研通 3236708
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871444
科研通“疑难数据库(出版商)”最低求助积分说明 802794