Applying Different Artificial Intelligence Techniques in Dynamic Poisson’s Ratio Prediction Using Drilling Parameters

支持向量机 钻探 计算机科学 灵敏度(控制系统) 随机森林 泊松分布 机器学习 数据挖掘 算法 人工智能 统计 数学 工程类 机械工程 电子工程
作者
Osama Sidddig,Hany Gamal,Salaheldin Elkatatny,Abdulazeez Abdulraheem
出处
期刊:Journal of Energy Resources Technology-transactions of The Asme [ASME International]
卷期号:144 (7) 被引量:15
标识
DOI:10.1115/1.4052185
摘要

Abstract Rock geomechanical properties impact wellbore stability, drilling performance, estimation of in situ stresses, and design of hydraulic fracturing. One of these properties is Poisson’s ratio which is measured from lab testing or derived from well logs, the former is costly, time-consuming, and does not provide continuous information, and the latter may not be always available. An alternative prediction technique from drilling parameters in real time is proposed in this paper. The novel contribution of this approach is that the drilling data is always available and obtained from the first encounter with the well. These parameters are easily obtainable from drilling rig sensors such as rate of penetration (ROP), weight on bit (WOB), and torque. Three machine-learning methods were utilized: support vector machine (SVM), functional network (FN), and random forest (RF). Dataset (2905 data points) from one well were used to build the models, while a dataset from another well with 2912 data points was used to validate the constructed models. Both wells have diverse lithology consists of carbonate, shale, and sandstone. To ensure optimal accuracy, sensitivity and optimization tests on various parameters in each algorithm were performed. The three machine-learning tools provided good estimations; however, SVM and RF yielded close results, with correlation coefficients of 0.99 and the average absolute percentage error (AAPE) values were mostly less than 1%. While in FN the outcomes were less efficient with correlation coefficients of 0.92 and AAPE around 3.8%. Accordingly, the presented approach provides an effective tool for Poisson's ratio prediction on a real-time basis at no additional expense. In addition, the same approach could be used in other rock mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wly完成签到,获得积分10
1秒前
Aurora完成签到,获得积分10
1秒前
pink发布了新的文献求助10
2秒前
Lucas应助半只橙采纳,获得10
2秒前
njau2005完成签到,获得积分10
2秒前
哈哈哈完成签到,获得积分10
3秒前
3秒前
Hello应助li采纳,获得10
4秒前
Jing完成签到,获得积分10
5秒前
wwww完成签到,获得积分10
5秒前
5秒前
科目三应助狂野香菱采纳,获得30
6秒前
海风发布了新的文献求助10
6秒前
一颗大树完成签到,获得积分10
8秒前
所所应助mufcyang采纳,获得10
8秒前
搜集达人应助摆烂昊采纳,获得10
9秒前
9秒前
初心路发布了新的文献求助10
10秒前
cc完成签到,获得积分10
11秒前
伶俐寒凡完成签到 ,获得积分10
11秒前
科研通AI2S应助hhh采纳,获得10
12秒前
bao完成签到,获得积分10
12秒前
small发布了新的文献求助20
12秒前
13秒前
13秒前
个性的紫菜应助whatever采纳,获得200
13秒前
14秒前
快乐应助zky采纳,获得10
14秒前
roi发布了新的文献求助10
14秒前
crabcrab29完成签到 ,获得积分10
15秒前
哇哇哇咔咔咔完成签到,获得积分20
15秒前
15秒前
automan完成签到,获得积分10
16秒前
我是中国人完成签到,获得积分10
17秒前
18秒前
MKY发布了新的文献求助10
18秒前
lisu应助饱满的保温杯采纳,获得10
18秒前
酷波er应助我是小魔菇采纳,获得10
18秒前
wawaaaah完成签到 ,获得积分10
19秒前
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159344
求助须知:如何正确求助?哪些是违规求助? 2810413
关于积分的说明 7887812
捐赠科研通 2469306
什么是DOI,文献DOI怎么找? 1314746
科研通“疑难数据库(出版商)”最低求助积分说明 630710
版权声明 602012