Phenomapping-Derived Tool to Individualize the Effect of Canagliflozin on Cardiovascular Risk in Type 2 Diabetes

卡格列净 医学 2型糖尿病 糖尿病 危险系数 内科学 安慰剂 内分泌学 置信区间 病理 替代医学
作者
Evangelos K. Oikonomou,Marc A. Suchard,Darren K. McGuire,Rohan Khera
出处
期刊:Diabetes Care [American Diabetes Association]
卷期号:45 (4): 965-974 被引量:22
标识
DOI:10.2337/dc21-1765
摘要

OBJECTIVE Sodium–glucose cotransporter 2 (SGLT2) inhibitors have well-documented cardioprotective effects but are underused, partly because of high cost. We aimed to develop a machine learning–based decision support tool to individualize the atherosclerotic cardiovascular disease (ASCVD) benefit of canagliflozin in type 2 diabetes. RESEARCH DESIGN AND METHODS We constructed a topological representation of the Canagliflozin Cardiovascular Assessment Study (CANVAS) using 75 baseline variables collected from 4,327 patients with type 2 diabetes randomly assigned 1:1:1 to one of two canagliflozin doses (n = 2,886) or placebo (n = 1,441). Within each patient’s 5% neighborhood, we calculated age- and sex-adjusted risk estimates for major adverse cardiovascular events (MACEs). An extreme gradient boosting algorithm was trained to predict the personalized ASCVD effect of canagliflozin using features most predictive of topological benefit. For validation, this algorithm was applied to the CANVAS-Renal (CANVAS-R) trial, comprising 5,808 patients with type 2 diabetes randomly assigned 1:1 to canagliflozin or placebo. RESULTS In CANVAS (mean age 60.9 ± 8.1 years; 33.9% women), 1,605 (37.1%) patients had a neighborhood hazard ratio (HR) more protective than the effect estimate of 0.86 reported for MACEs in the original trial. A 15-variable tool, INSIGHT, trained to predict the personalized ASCVD effects of canagliflozin in CANVAS, was tested in CANVAS-R (mean age 62.4 ± 8.4 years; 2,164 [37.3%] women), where it identified patient phenotypes with greater ASCVD canagliflozin effects (adjusted HR 0.60 [95% CI 0.41–0.89] vs. 0.99 [95% CI 0.76–1.29]; Pinteraction = 0.04). CONCLUSIONS We present an evidence-based, machine learning–guided algorithm to personalize the prescription of SGLT2 inhibitors for patients with type 2 diabetes for ASCVD effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木菁完成签到,获得积分10
1秒前
科研通AI2S应助阿尔法贝塔采纳,获得10
2秒前
江城子发布了新的文献求助10
2秒前
CodeCraft应助irisjlj采纳,获得10
4秒前
wuhoo发布了新的文献求助10
4秒前
4秒前
无情听南发布了新的文献求助10
4秒前
4秒前
橙汁完成签到,获得积分10
5秒前
Hey完成签到,获得积分10
7秒前
gjd123发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
在水一方应助beperfect采纳,获得10
10秒前
jqs完成签到,获得积分10
11秒前
华仔应助范先生采纳,获得10
13秒前
15秒前
SciGPT应助jasmine采纳,获得10
16秒前
17秒前
17秒前
失眠碧琴完成签到,获得积分10
19秒前
李健的小迷弟应助Robin采纳,获得10
19秒前
21秒前
21秒前
orixero应助江城子采纳,获得10
22秒前
爆米花应助康2000采纳,获得10
23秒前
Taurus_Ho发布了新的文献求助20
24秒前
suda完成签到,获得积分10
24秒前
失眠碧琴发布了新的文献求助10
25秒前
Ava应助BowenShi采纳,获得10
28秒前
29秒前
29秒前
wu完成签到,获得积分10
30秒前
赫灵竹完成签到,获得积分10
30秒前
30秒前
haha完成签到 ,获得积分10
32秒前
大模型应助卡萨丁那看啥采纳,获得10
32秒前
32秒前
勤奋中道发布了新的文献求助10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454290
求助须知:如何正确求助?哪些是违规求助? 3049527
关于积分的说明 9017703
捐赠科研通 2738085
什么是DOI,文献DOI怎么找? 1501900
科研通“疑难数据库(出版商)”最低求助积分说明 694307
邀请新用户注册赠送积分活动 692895