Deep metric learning for accurate protein secondary structure prediction

质心 嵌入 深度学习 计算机科学 最近邻搜索 人工智能 特征(语言学) 蛋白质结构预测 相似性(几何) 模式识别(心理学) 公制(单位) 特征向量 k-最近邻算法 机器学习 数据挖掘 算法 蛋白质结构 工程类 图像(数学) 核磁共振 物理 哲学 语言学 运营管理
作者
Wei Yang,Yang Liu,Chunjing Xiao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:242: 108356-108356 被引量:10
标识
DOI:10.1016/j.knosys.2022.108356
摘要

Predicting the secondary structure of a protein from its amino acid sequence alone is a challenging prediction task for each residue in bioinformatics. Recent work has mainly used deep models based on the profile feature derived from multiple sequence alignments to make predictions. However, the existing state-of-the-art predictors usually have higher computational costs due to their large model sizes and complex network architectures. Here, we propose a simple yet effective deep centroid model for sequence-to-sequence secondary structure prediction based on deep metric learning. The proposed model adopts a lightweight embedding network with multibranch topology to map each residue in a protein chain into an embedding space. The goal of embedding learning is to maximize the similarity of each residue to its target centroid while minimizing its similarity to nontarget centroids. By assigning secondary structure types based on the learned centroids, we bypass the need for a time-consuming k-nearest neighbor search. Experimental results on six test sets demonstrate that our method achieves state-of-the-art performance with a simple architecture and smaller model size than existing models. Moreover, we also experimentally show that the embedding feature from the pretrained protein language model ProtT5-XL-U50 is superior to the profile feature in terms of prediction accuracy and feature generation speed. Code and datasets are available at https://github.com/fengtuan/DML_SS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
5秒前
朴素的飞丹完成签到 ,获得积分10
7秒前
蔡从安完成签到,获得积分20
8秒前
8秒前
south发布了新的文献求助10
8秒前
10秒前
13秒前
14秒前
Owen应助qwer0802采纳,获得10
15秒前
uf欧发布了新的文献求助10
15秒前
花陵发布了新的文献求助10
16秒前
在水一方应助cj1223采纳,获得10
16秒前
啧啧啧啧发布了新的文献求助10
16秒前
stk完成签到,获得积分10
16秒前
17秒前
肚子圆圆的完成签到 ,获得积分10
17秒前
south完成签到,获得积分10
18秒前
19秒前
Zzzzzzzzzzz发布了新的文献求助20
20秒前
深情安青应助WWW采纳,获得10
21秒前
Minkslion完成签到 ,获得积分10
22秒前
orixero应助您的慈父采纳,获得10
22秒前
zzzq发布了新的文献求助10
22秒前
是呀完成签到 ,获得积分10
22秒前
adam完成签到,获得积分10
23秒前
23秒前
bkagyin应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得30
25秒前
25秒前
liu完成签到,获得积分10
25秒前
25秒前
Owen应助瘦子爱吃肥肉采纳,获得10
26秒前
Cyan发布了新的文献求助10
29秒前
zzzq完成签到,获得积分10
31秒前
充电宝应助自行者采纳,获得10
34秒前
34秒前
脑洞疼应助不安夜雪采纳,获得10
34秒前
xiaozheng完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540799
求助须知:如何正确求助?哪些是违规求助? 3118078
关于积分的说明 9333737
捐赠科研通 2815905
什么是DOI,文献DOI怎么找? 1547969
邀请新用户注册赠送积分活动 721218
科研通“疑难数据库(出版商)”最低求助积分说明 712597