炎症
促炎细胞因子
脂多糖
肿瘤坏死因子α
化学
内分泌学
西妥因1
NF-κB
内科学
药理学
医学
下调和上调
生物化学
基因
作者
Arang Kim,Min-Hee Gwon,Wooje Lee,Ha-Rin Moon,Jung‐Mi Yun
标识
DOI:10.1016/j.nutres.2022.01.002
摘要
Diabetes mellitus is characterized by hyperglycemia. Low-grade bacterial infection with hyperglycemia in patients with diabetes is associated with atherosclerosis development. Therefore, this study hypothesized that macrophages lead to more severe diabetic complications under combined conditions of high glucose and lipopolysaccharide (LPS)-induced inflammation than under normoglycemic conditions. Zerumbone is the main component of Zingiber zerumbet Smith essential oil, a type of wild ginger. It possesses various biomedical activities, including antibacterial, antioxidant, anti-inflammatory, and anticancer activities; however, the precise mechanism of its anti-inflammatory and epigenetic effects is not fully understood. In this study, the effects of zerumbone on the secretion of proinflammatory cytokines and its underlying regulatory mechanism were investigated in THP-1-derived macrophages exposed to high glucose and LPS. THP-1-derived macrophages were cultured under normoglycemic (5.5 mmol/L glucose) or hyperglycemic (25 mmol/L glucose) conditions in the absence or presence of zerumbone (5-50 μM) for 48 hours and then treated with 100 ng/mL LPS for 6 hours. Zerumbone (25 and 50 μM) suppressed the production of tumor necrosis factor-α and interleukin-6 and the activation of cyclooxygenase-2, nuclear factor-κB, histone deacetylases 3 proteins, and Toll-like receptor messenger RNA (mRNA) and increased the transcription of the sirtuin 1 (SIRT1), SIRT3, and SIRT6 mRNAs. Taken together, our results suggest that zerumbone may exert beneficial effects on diabetes and its complications.
科研通智能强力驱动
Strongly Powered by AbleSci AI