Artificial intelligence in predicting early-onset adjacent segment degeneration following anterior cervical discectomy and fusion

医学 颈椎前路椎间盘切除融合术 退行性椎间盘病 椎间盘切除术 磁共振成像 回顾性队列研究 射线照相术 外科 放射科 腰椎 颈椎
作者
Samuel S. Rudisill,Alexander L. Hornung,J. Nicolás Barajas,Jack J. Bridge,G. Michael Mallow,Wylie Lopez,Arash J. Sayari,Philip K. Louie,Garrett K. Harada,Youping Tao,Hans‐Joachim Wilke,Matthew W. Colman,Frank M. Phillips,Howard S. An,Dino Samartzis
出处
期刊:European Spine Journal [Springer Science+Business Media]
卷期号:31 (8): 2104-2114 被引量:26
标识
DOI:10.1007/s00586-022-07238-3
摘要

PurposeAnterior cervical discectomy and fusion (ACDF) is a common surgical treatment for degenerative disease in the cervical spine. However, resultant biomechanical alterations may predispose to early-onset adjacent segment degeneration (EO-ASD), which may become symptomatic and require reoperation. This study aimed to develop and validate a machine learning (ML) model to predict EO-ASD following ACDF.MethodsRetrospective review of prospectively collected data of patients undergoing ACDF at a quaternary referral medical center was performed. Patients > 18 years of age with > 6 months of follow-up and complete pre- and postoperative X-ray and MRI imaging were included. An ML-based algorithm was developed to predict EO-ASD based on preoperative demographic, clinical, and radiographic parameters, and model performance was evaluated according to discrimination and overall performance.ResultsIn total, 366 ACDF patients were included (50.8% male, mean age 51.4 ± 11.1 years). Over 18.7 ± 20.9 months of follow-up, 97 (26.5%) patients developed EO-ASD. The model demonstrated good discrimination and overall performance according to precision (EO-ASD: 0.70, non-ASD: 0.88), recall (EO-ASD: 0.73, non-ASD: 0.87), accuracy (0.82), F1-score (0.79), Brier score (0.203), and AUC (0.794), with C4/C5 posterior disc bulge, C4/C5 anterior disc bulge, C6 posterior superior osteophyte, presence of osteophytes, and C6/C7 anterior disc bulge identified as the most important predictive features.ConclusionsThrough an ML approach, the model identified risk factors and predicted development of EO-ASD following ACDF with good discrimination and overall performance. By addressing the shortcomings of traditional statistics, ML techniques can support discovery, clinical decision-making, and precision-based spine care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助生动路人采纳,获得10
1秒前
1秒前
打打应助狂暴的蜗牛0713采纳,获得10
2秒前
2秒前
领导范儿应助迷人的千秋采纳,获得10
3秒前
3秒前
许院士发布了新的文献求助10
4秒前
爆米花应助健忘的板凳采纳,获得10
4秒前
Wy发布了新的文献求助10
5秒前
Tsuki完成签到,获得积分10
5秒前
5秒前
赵琪发布了新的文献求助10
5秒前
黄姗姗完成签到,获得积分10
6秒前
科研通AI5应助LM采纳,获得10
6秒前
ding应助黄帅比采纳,获得10
7秒前
7秒前
Liiiii发布了新的文献求助10
7秒前
遗yi发布了新的文献求助10
7秒前
8秒前
XuLiu完成签到,获得积分20
8秒前
bkagyin应助猪猪hero采纳,获得10
8秒前
RC_Wang发布了新的文献求助10
9秒前
9秒前
无奈凡波发布了新的文献求助10
9秒前
10秒前
烟花应助Wy采纳,获得10
10秒前
大个应助LHQ采纳,获得10
10秒前
10秒前
10秒前
11秒前
科研通AI6应助到江南散步采纳,获得10
11秒前
11秒前
冷艳的爆米花完成签到,获得积分10
12秒前
奋斗的曼容完成签到,获得积分10
12秒前
ZG发布了新的文献求助10
12秒前
MeiLing完成签到,获得积分10
12秒前
12秒前
灰灰12138发布了新的文献求助10
12秒前
陈粮酿好酒完成签到,获得积分10
13秒前
浮舟寄沧海完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111526
求助须知:如何正确求助?哪些是违规求助? 4319720
关于积分的说明 13459271
捐赠科研通 4150427
什么是DOI,文献DOI怎么找? 2274173
邀请新用户注册赠送积分活动 1276148
关于科研通互助平台的介绍 1214369