Artificial intelligence in predicting early-onset adjacent segment degeneration following anterior cervical discectomy and fusion

医学 颈椎前路椎间盘切除融合术 退行性椎间盘病 椎间盘切除术 磁共振成像 回顾性队列研究 射线照相术 外科 放射科 腰椎 颈椎
作者
Samuel S. Rudisill,Alexander L. Hornung,J. Nicolás Barajas,Jack J. Bridge,G. Michael Mallow,Wylie Lopez,Arash J. Sayari,Philip K. Louie,Garrett K. Harada,Youping Tao,Hans‐Joachim Wilke,Matthew W. Colman,Frank M. Phillips,Howard S. An,Dino Samartzis
出处
期刊:European Spine Journal [Springer Nature]
卷期号:31 (8): 2104-2114 被引量:22
标识
DOI:10.1007/s00586-022-07238-3
摘要

PurposeAnterior cervical discectomy and fusion (ACDF) is a common surgical treatment for degenerative disease in the cervical spine. However, resultant biomechanical alterations may predispose to early-onset adjacent segment degeneration (EO-ASD), which may become symptomatic and require reoperation. This study aimed to develop and validate a machine learning (ML) model to predict EO-ASD following ACDF.MethodsRetrospective review of prospectively collected data of patients undergoing ACDF at a quaternary referral medical center was performed. Patients > 18 years of age with > 6 months of follow-up and complete pre- and postoperative X-ray and MRI imaging were included. An ML-based algorithm was developed to predict EO-ASD based on preoperative demographic, clinical, and radiographic parameters, and model performance was evaluated according to discrimination and overall performance.ResultsIn total, 366 ACDF patients were included (50.8% male, mean age 51.4 ± 11.1 years). Over 18.7 ± 20.9 months of follow-up, 97 (26.5%) patients developed EO-ASD. The model demonstrated good discrimination and overall performance according to precision (EO-ASD: 0.70, non-ASD: 0.88), recall (EO-ASD: 0.73, non-ASD: 0.87), accuracy (0.82), F1-score (0.79), Brier score (0.203), and AUC (0.794), with C4/C5 posterior disc bulge, C4/C5 anterior disc bulge, C6 posterior superior osteophyte, presence of osteophytes, and C6/C7 anterior disc bulge identified as the most important predictive features.ConclusionsThrough an ML approach, the model identified risk factors and predicted development of EO-ASD following ACDF with good discrimination and overall performance. By addressing the shortcomings of traditional statistics, ML techniques can support discovery, clinical decision-making, and precision-based spine care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
廿叁完成签到,获得积分10
1秒前
1秒前
研友_VZG7GZ应助a雪橙采纳,获得10
2秒前
zanilia应助GJ采纳,获得10
4秒前
沐沐心完成签到 ,获得积分10
4秒前
无花果应助小航采纳,获得10
5秒前
7秒前
CACT完成签到,获得积分10
8秒前
8秒前
8秒前
10秒前
科研小李应助lll采纳,获得10
11秒前
11秒前
13654135090完成签到,获得积分10
13秒前
15秒前
我是老大应助阳pipi采纳,获得10
17秒前
18秒前
zhazhane发布了新的文献求助10
20秒前
20秒前
20秒前
雨雪发布了新的文献求助10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
21秒前
华仔应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
cocolu应助科研通管家采纳,获得30
22秒前
orixero应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
22秒前
24秒前
Tycoon发布了新的文献求助10
25秒前
25秒前
LJbe2o发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
JamesPei应助MMMMM采纳,获得10
30秒前
31秒前
彭于晏应助LJbe2o采纳,获得10
31秒前
HRIFFIN发布了新的文献求助10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304