Artificial intelligence in predicting early-onset adjacent segment degeneration following anterior cervical discectomy and fusion

医学 颈椎前路椎间盘切除融合术 退行性椎间盘病 椎间盘切除术 磁共振成像 回顾性队列研究 射线照相术 外科 放射科 腰椎 颈椎
作者
Samuel S. Rudisill,Alexander L. Hornung,J. Nicolás Barajas,Jack J. Bridge,G. Michael Mallow,Wylie Lopez,Arash J. Sayari,Philip K. Louie,Garrett K. Harada,Youping Tao,Hans‐Joachim Wilke,Matthew W. Colman,Frank M. Phillips,Howard S. An,Dino Samartzis
出处
期刊:European Spine Journal [Springer Science+Business Media]
卷期号:31 (8): 2104-2114 被引量:22
标识
DOI:10.1007/s00586-022-07238-3
摘要

PurposeAnterior cervical discectomy and fusion (ACDF) is a common surgical treatment for degenerative disease in the cervical spine. However, resultant biomechanical alterations may predispose to early-onset adjacent segment degeneration (EO-ASD), which may become symptomatic and require reoperation. This study aimed to develop and validate a machine learning (ML) model to predict EO-ASD following ACDF.MethodsRetrospective review of prospectively collected data of patients undergoing ACDF at a quaternary referral medical center was performed. Patients > 18 years of age with > 6 months of follow-up and complete pre- and postoperative X-ray and MRI imaging were included. An ML-based algorithm was developed to predict EO-ASD based on preoperative demographic, clinical, and radiographic parameters, and model performance was evaluated according to discrimination and overall performance.ResultsIn total, 366 ACDF patients were included (50.8% male, mean age 51.4 ± 11.1 years). Over 18.7 ± 20.9 months of follow-up, 97 (26.5%) patients developed EO-ASD. The model demonstrated good discrimination and overall performance according to precision (EO-ASD: 0.70, non-ASD: 0.88), recall (EO-ASD: 0.73, non-ASD: 0.87), accuracy (0.82), F1-score (0.79), Brier score (0.203), and AUC (0.794), with C4/C5 posterior disc bulge, C4/C5 anterior disc bulge, C6 posterior superior osteophyte, presence of osteophytes, and C6/C7 anterior disc bulge identified as the most important predictive features.ConclusionsThrough an ML approach, the model identified risk factors and predicted development of EO-ASD following ACDF with good discrimination and overall performance. By addressing the shortcomings of traditional statistics, ML techniques can support discovery, clinical decision-making, and precision-based spine care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
沈DJ发布了新的文献求助10
2秒前
spp完成签到 ,获得积分0
4秒前
6秒前
和谐的巨人完成签到 ,获得积分10
6秒前
重要鑫磊发布了新的文献求助10
8秒前
upsoar发布了新的文献求助10
11秒前
11秒前
ABEDO完成签到 ,获得积分10
12秒前
眼睛大依霜完成签到,获得积分20
13秒前
13秒前
13秒前
可爱的函函应助重要鑫磊采纳,获得10
15秒前
16秒前
Nuckylin发布了新的文献求助10
17秒前
寸光发布了新的文献求助10
18秒前
20秒前
乙醇发布了新的文献求助10
20秒前
20秒前
Gengar发布了新的文献求助10
21秒前
22秒前
Tancl1235完成签到,获得积分10
22秒前
23秒前
24秒前
生医工小博完成签到,获得积分20
24秒前
壮观以松完成签到,获得积分10
25秒前
小马甲应助Espionage采纳,获得10
26秒前
molotov发布了新的文献求助10
27秒前
健忘捕发布了新的文献求助10
28秒前
希文完成签到,获得积分10
28秒前
biozhp发布了新的文献求助10
29秒前
zack完成签到,获得积分10
32秒前
Nee发布了新的文献求助10
32秒前
Ll_l完成签到,获得积分10
34秒前
35秒前
36秒前
搜集达人应助Tancl1235采纳,获得10
36秒前
37秒前
wang发布了新的文献求助10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517