Identification of spreading influence nodes via multi-level structural attributes based on the graph convolutional network

计算机科学 节点(物理) 图形 计算复杂性理论 理论计算机科学 算法 数据挖掘 人工智能 结构工程 工程类
作者
Yang Ou,Qiang Guo,Jia-Liang Xing,Jian-Guo Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:203: 117515-117515 被引量:48
标识
DOI:10.1016/j.eswa.2022.117515
摘要

The network structural properties at the micro-level, community-level and macro-level have different contributions to the spreading influence of nodes. The challenge is how to make better use of different structural information while keeping the efficiency of the spreading influence identification algorithm. By taking the micro-level, community-level and macro-level structural information into account, an improved graph convolutional network based algorithm, namely the multi-channel RCNN (M-RCNN) is proposed to identify spreading influence nodes. As we focus on both the efficiency and accuracy of the algorithm, three centralities with low computational complexity are introduced: the sum of neighbors’ degree, the number of communities a node is connected with, and the k -core value. To construct the input of the M-RCNN, we first use the Breadth-first algorithm to extract a fixed-size neighborhood network for each node. Then exploit three matrices to encode the input of nodes rather than simply embedding different levels of structural information into the same matrix, which allows the weights that couple the three structural properties to be learned automatically during the training process. The experiments conducted on nine real-world networks show that, on average, compared with the RCNN algorithm, the accuracy obtained by the M-RCNN outperforms by 9.25%. By conducting efficiency test on nine Barabasi–Albert networks, the results show that the computational complexity of the M-RCNN is close to the RCNN. This work is helpful for deeply understanding the effects of network structure on the graph convolutional network performance. • The graph convolutional network is introduced to identify spreading influence nodes. • The structure properties of networks at multiple levels are taken into account. • The proposed model trained by small networks can make predictions in large networks. • Three-channel inputs are constructed to preserve different structural information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
番茄完成签到,获得积分10
1秒前
科研通AI6应助Laneyliu采纳,获得10
1秒前
奔赴发布了新的文献求助10
2秒前
3秒前
隐形曼青应助过时的初柔采纳,获得10
3秒前
复杂的访波完成签到,获得积分20
4秒前
无极微光应助从容芸采纳,获得20
4秒前
犯困的溪南完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
所所应助dophin采纳,获得10
5秒前
田様应助夏辉采纳,获得10
5秒前
领导范儿应助喵喵采纳,获得10
6秒前
胡慧婷完成签到 ,获得积分10
6秒前
李健的小迷弟应助喵喵采纳,获得10
6秒前
完美世界应助喵喵采纳,获得10
6秒前
脑洞疼应助喵喵采纳,获得10
6秒前
嫁接诺贝尔应助喵喵采纳,获得10
6秒前
科研通AI6应助喵喵采纳,获得10
6秒前
小二郎应助喵喵采纳,获得10
6秒前
田様应助喵喵采纳,获得30
6秒前
Orange应助喵喵采纳,获得10
6秒前
丘比特应助喵喵采纳,获得10
6秒前
尘默完成签到,获得积分10
7秒前
7秒前
123发布了新的文献求助10
8秒前
9秒前
Zhuyin发布了新的文献求助30
9秒前
赘婿应助苛帅采纳,获得10
10秒前
研友_wZr5Rn完成签到,获得积分10
11秒前
11秒前
汉堡包应助zh1858f采纳,获得10
11秒前
扶桑发布了新的文献求助10
13秒前
ranj发布了新的文献求助10
13秒前
15秒前
X_X发布了新的文献求助10
15秒前
天天快乐应助小吉麻麻采纳,获得10
15秒前
15秒前
15秒前
lily发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367