清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of spreading influence nodes via multi-level structural attributes based on the graph convolutional network

计算机科学 节点(物理) 图形 计算复杂性理论 理论计算机科学 算法 数据挖掘 人工智能 结构工程 工程类
作者
Yang Ou,Qiang Guo,Jia-Liang Xing,Jian-Guo Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:203: 117515-117515 被引量:41
标识
DOI:10.1016/j.eswa.2022.117515
摘要

The network structural properties at the micro-level, community-level and macro-level have different contributions to the spreading influence of nodes. The challenge is how to make better use of different structural information while keeping the efficiency of the spreading influence identification algorithm. By taking the micro-level, community-level and macro-level structural information into account, an improved graph convolutional network based algorithm, namely the multi-channel RCNN (M-RCNN) is proposed to identify spreading influence nodes. As we focus on both the efficiency and accuracy of the algorithm, three centralities with low computational complexity are introduced: the sum of neighbors’ degree, the number of communities a node is connected with, and the k -core value. To construct the input of the M-RCNN, we first use the Breadth-first algorithm to extract a fixed-size neighborhood network for each node. Then exploit three matrices to encode the input of nodes rather than simply embedding different levels of structural information into the same matrix, which allows the weights that couple the three structural properties to be learned automatically during the training process. The experiments conducted on nine real-world networks show that, on average, compared with the RCNN algorithm, the accuracy obtained by the M-RCNN outperforms by 9.25%. By conducting efficiency test on nine Barabasi–Albert networks, the results show that the computational complexity of the M-RCNN is close to the RCNN. This work is helpful for deeply understanding the effects of network structure on the graph convolutional network performance. • The graph convolutional network is introduced to identify spreading influence nodes. • The structure properties of networks at multiple levels are taken into account. • The proposed model trained by small networks can make predictions in large networks. • Three-channel inputs are constructed to preserve different structural information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助lanxinge采纳,获得10
14秒前
ldjldj_2004完成签到 ,获得积分10
19秒前
sysi完成签到 ,获得积分10
21秒前
WenJun完成签到,获得积分10
39秒前
Sunny完成签到,获得积分10
43秒前
缥缈完成签到 ,获得积分10
1分钟前
1分钟前
lanxinge发布了新的文献求助10
1分钟前
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
comeanddo应助科研通管家采纳,获得10
1分钟前
1分钟前
酷波er应助lanxinge采纳,获得10
1分钟前
huanghe完成签到,获得积分10
2分钟前
2分钟前
lanxinge发布了新的文献求助10
2分钟前
HiDasiy完成签到 ,获得积分10
2分钟前
yq发布了新的文献求助10
2分钟前
深情安青应助lanxinge采纳,获得10
2分钟前
mia完成签到,获得积分10
3分钟前
沙海沉戈完成签到,获得积分0
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
3分钟前
慕青应助幻梦如歌采纳,获得10
3分钟前
lanxinge发布了新的文献求助10
3分钟前
yq完成签到,获得积分20
3分钟前
4分钟前
4分钟前
naczx完成签到,获得积分0
5分钟前
丹妮完成签到 ,获得积分10
5分钟前
动漫大师发布了新的文献求助10
6分钟前
6分钟前
稻子完成签到 ,获得积分10
7分钟前
英喆完成签到 ,获得积分10
7分钟前
comeanddo应助科研通管家采纳,获得20
7分钟前
笑面客发布了新的文献求助10
8分钟前
xiaofeixia完成签到 ,获得积分10
8分钟前
arsenal发布了新的文献求助10
10分钟前
yumb发布了新的文献求助20
10分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746201
求助须知:如何正确求助?哪些是违规求助? 3289015
关于积分的说明 10061744
捐赠科研通 3005280
什么是DOI,文献DOI怎么找? 1650186
邀请新用户注册赠送积分活动 785753
科研通“疑难数据库(出版商)”最低求助积分说明 751258