清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of spreading influence nodes via multi-level structural attributes based on the graph convolutional network

计算机科学 节点(物理) 图形 计算复杂性理论 理论计算机科学 算法 数据挖掘 人工智能 结构工程 工程类
作者
Yang Ou,Qiang Guo,Jia-Liang Xing,Jian-Guo Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:203: 117515-117515 被引量:41
标识
DOI:10.1016/j.eswa.2022.117515
摘要

The network structural properties at the micro-level, community-level and macro-level have different contributions to the spreading influence of nodes. The challenge is how to make better use of different structural information while keeping the efficiency of the spreading influence identification algorithm. By taking the micro-level, community-level and macro-level structural information into account, an improved graph convolutional network based algorithm, namely the multi-channel RCNN (M-RCNN) is proposed to identify spreading influence nodes. As we focus on both the efficiency and accuracy of the algorithm, three centralities with low computational complexity are introduced: the sum of neighbors’ degree, the number of communities a node is connected with, and the k -core value. To construct the input of the M-RCNN, we first use the Breadth-first algorithm to extract a fixed-size neighborhood network for each node. Then exploit three matrices to encode the input of nodes rather than simply embedding different levels of structural information into the same matrix, which allows the weights that couple the three structural properties to be learned automatically during the training process. The experiments conducted on nine real-world networks show that, on average, compared with the RCNN algorithm, the accuracy obtained by the M-RCNN outperforms by 9.25%. By conducting efficiency test on nine Barabasi–Albert networks, the results show that the computational complexity of the M-RCNN is close to the RCNN. This work is helpful for deeply understanding the effects of network structure on the graph convolutional network performance. • The graph convolutional network is introduced to identify spreading influence nodes. • The structure properties of networks at multiple levels are taken into account. • The proposed model trained by small networks can make predictions in large networks. • Three-channel inputs are constructed to preserve different structural information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助怪杰采纳,获得10
1秒前
思源应助Dz1990m采纳,获得10
9秒前
怪杰发布了新的文献求助10
23秒前
27秒前
Dz1990m发布了新的文献求助10
32秒前
37秒前
怪杰发布了新的文献求助10
42秒前
大个应助怪杰采纳,获得10
52秒前
量子星尘发布了新的文献求助80
52秒前
1分钟前
1分钟前
郜郜嗳发布了新的文献求助10
1分钟前
怪杰发布了新的文献求助10
1分钟前
火星的雪完成签到 ,获得积分10
1分钟前
郜郜嗳完成签到,获得积分10
1分钟前
万能图书馆应助怪杰采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
kokoko完成签到,获得积分10
2分钟前
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
Sunny完成签到,获得积分10
3分钟前
3分钟前
英喆完成签到 ,获得积分10
3分钟前
arsenal完成签到 ,获得积分10
3分钟前
ryan1300完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
怪杰发布了新的文献求助10
3分钟前
火之高兴完成签到 ,获得积分10
3分钟前
3分钟前
Skywings完成签到,获得积分10
4分钟前
怪杰发布了新的文献求助10
4分钟前
4分钟前
Angela发布了新的文献求助10
4分钟前
JamesPei应助怪杰采纳,获得10
4分钟前
wujiwuhui完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292