Identification of spreading influence nodes via multi-level structural attributes based on the graph convolutional network

计算机科学 节点(物理) 图形 计算复杂性理论 理论计算机科学 算法 数据挖掘 人工智能 结构工程 工程类
作者
Yang Ou,Qiang Guo,Jia-Liang Xing,Jian-Guo Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:203: 117515-117515 被引量:32
标识
DOI:10.1016/j.eswa.2022.117515
摘要

The network structural properties at the micro-level, community-level and macro-level have different contributions to the spreading influence of nodes. The challenge is how to make better use of different structural information while keeping the efficiency of the spreading influence identification algorithm. By taking the micro-level, community-level and macro-level structural information into account, an improved graph convolutional network based algorithm, namely the multi-channel RCNN (M-RCNN) is proposed to identify spreading influence nodes. As we focus on both the efficiency and accuracy of the algorithm, three centralities with low computational complexity are introduced: the sum of neighbors’ degree, the number of communities a node is connected with, and the k -core value. To construct the input of the M-RCNN, we first use the Breadth-first algorithm to extract a fixed-size neighborhood network for each node. Then exploit three matrices to encode the input of nodes rather than simply embedding different levels of structural information into the same matrix, which allows the weights that couple the three structural properties to be learned automatically during the training process. The experiments conducted on nine real-world networks show that, on average, compared with the RCNN algorithm, the accuracy obtained by the M-RCNN outperforms by 9.25%. By conducting efficiency test on nine Barabasi–Albert networks, the results show that the computational complexity of the M-RCNN is close to the RCNN. This work is helpful for deeply understanding the effects of network structure on the graph convolutional network performance. • The graph convolutional network is introduced to identify spreading influence nodes. • The structure properties of networks at multiple levels are taken into account. • The proposed model trained by small networks can make predictions in large networks. • Three-channel inputs are constructed to preserve different structural information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
柒八染完成签到,获得积分10
1秒前
wsljc134完成签到,获得积分20
1秒前
2秒前
善良香岚完成签到,获得积分20
2秒前
2秒前
2秒前
123发布了新的文献求助10
2秒前
2秒前
不安太阳完成签到,获得积分10
3秒前
t_suo完成签到,获得积分10
3秒前
bioinforiver完成签到,获得积分10
3秒前
乐观跳跳糖完成签到,获得积分10
3秒前
3秒前
WxChen发布了新的文献求助10
4秒前
4秒前
酷炫的香魔完成签到,获得积分10
4秒前
4秒前
4秒前
NexusExplorer应助无奈满天采纳,获得10
4秒前
qwt_hello完成签到,获得积分10
4秒前
4秒前
海涛完成签到,获得积分10
5秒前
星星发布了新的文献求助10
6秒前
qq完成签到,获得积分10
6秒前
6秒前
6秒前
中央戏精学院完成签到,获得积分10
6秒前
寒冷依秋完成签到,获得积分10
6秒前
彭于晏应助jogrgr采纳,获得10
6秒前
思源应助momo采纳,获得10
7秒前
guozi应助yi采纳,获得10
7秒前
科研通AI2S应助鲤鱼凛采纳,获得10
7秒前
7秒前
kumarr发布了新的文献求助10
7秒前
7秒前
时尚语梦发布了新的文献求助10
7秒前
苹果酸奶完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759