Identification of spreading influence nodes via multi-level structural attributes based on the graph convolutional network

计算机科学 节点(物理) 图形 计算复杂性理论 理论计算机科学 算法 数据挖掘 人工智能 结构工程 工程类
作者
Yang Ou,Qiang Guo,Jia-Liang Xing,Jian-Guo Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:203: 117515-117515 被引量:30
标识
DOI:10.1016/j.eswa.2022.117515
摘要

The network structural properties at the micro-level, community-level and macro-level have different contributions to the spreading influence of nodes. The challenge is how to make better use of different structural information while keeping the efficiency of the spreading influence identification algorithm. By taking the micro-level, community-level and macro-level structural information into account, an improved graph convolutional network based algorithm, namely the multi-channel RCNN (M-RCNN) is proposed to identify spreading influence nodes. As we focus on both the efficiency and accuracy of the algorithm, three centralities with low computational complexity are introduced: the sum of neighbors’ degree, the number of communities a node is connected with, and the k -core value. To construct the input of the M-RCNN, we first use the Breadth-first algorithm to extract a fixed-size neighborhood network for each node. Then exploit three matrices to encode the input of nodes rather than simply embedding different levels of structural information into the same matrix, which allows the weights that couple the three structural properties to be learned automatically during the training process. The experiments conducted on nine real-world networks show that, on average, compared with the RCNN algorithm, the accuracy obtained by the M-RCNN outperforms by 9.25%. By conducting efficiency test on nine Barabasi–Albert networks, the results show that the computational complexity of the M-RCNN is close to the RCNN. This work is helpful for deeply understanding the effects of network structure on the graph convolutional network performance. • The graph convolutional network is introduced to identify spreading influence nodes. • The structure properties of networks at multiple levels are taken into account. • The proposed model trained by small networks can make predictions in large networks. • Three-channel inputs are constructed to preserve different structural information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可可发布了新的文献求助30
1秒前
ddd发布了新的文献求助10
2秒前
可爱怀莲完成签到,获得积分10
2秒前
2秒前
3秒前
5秒前
5秒前
6秒前
8秒前
藤原拓海完成签到 ,获得积分10
8秒前
x跳发布了新的文献求助10
8秒前
11秒前
11秒前
zz完成签到,获得积分10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得30
13秒前
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
南瓜难应助科研通管家采纳,获得30
13秒前
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
x跳完成签到,获得积分10
14秒前
XHY123完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助雪中采纳,获得10
15秒前
15秒前
15秒前
15秒前
dgq_81发布了新的文献求助10
16秒前
李健应助林璇璇采纳,获得10
16秒前
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943