清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of spreading influence nodes via multi-level structural attributes based on the graph convolutional network

计算机科学 节点(物理) 图形 计算复杂性理论 理论计算机科学 算法 数据挖掘 人工智能 结构工程 工程类
作者
Yang Ou,Qiang Guo,Jia-Liang Xing,Jian-Guo Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:203: 117515-117515 被引量:48
标识
DOI:10.1016/j.eswa.2022.117515
摘要

The network structural properties at the micro-level, community-level and macro-level have different contributions to the spreading influence of nodes. The challenge is how to make better use of different structural information while keeping the efficiency of the spreading influence identification algorithm. By taking the micro-level, community-level and macro-level structural information into account, an improved graph convolutional network based algorithm, namely the multi-channel RCNN (M-RCNN) is proposed to identify spreading influence nodes. As we focus on both the efficiency and accuracy of the algorithm, three centralities with low computational complexity are introduced: the sum of neighbors’ degree, the number of communities a node is connected with, and the k -core value. To construct the input of the M-RCNN, we first use the Breadth-first algorithm to extract a fixed-size neighborhood network for each node. Then exploit three matrices to encode the input of nodes rather than simply embedding different levels of structural information into the same matrix, which allows the weights that couple the three structural properties to be learned automatically during the training process. The experiments conducted on nine real-world networks show that, on average, compared with the RCNN algorithm, the accuracy obtained by the M-RCNN outperforms by 9.25%. By conducting efficiency test on nine Barabasi–Albert networks, the results show that the computational complexity of the M-RCNN is close to the RCNN. This work is helpful for deeply understanding the effects of network structure on the graph convolutional network performance. • The graph convolutional network is introduced to identify spreading influence nodes. • The structure properties of networks at multiple levels are taken into account. • The proposed model trained by small networks can make predictions in large networks. • Three-channel inputs are constructed to preserve different structural information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
lawang发布了新的文献求助10
20秒前
萨尔莫斯完成签到,获得积分10
29秒前
38秒前
大饼完成签到 ,获得积分10
41秒前
ww发布了新的文献求助10
45秒前
1分钟前
SUNny发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
2分钟前
lawang完成签到,获得积分10
2分钟前
ww完成签到,获得积分10
2分钟前
mkeale应助科研通管家采纳,获得20
2分钟前
兆兆完成签到 ,获得积分10
2分钟前
慕青应助光能使者采纳,获得30
3分钟前
3分钟前
光能使者发布了新的文献求助30
3分钟前
qi完成签到 ,获得积分10
3分钟前
SUNny完成签到 ,获得积分10
3分钟前
光能使者完成签到 ,获得积分10
4分钟前
4分钟前
夏茉弋发布了新的文献求助10
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
如歌完成签到,获得积分10
4分钟前
华仔应助夏茉弋采纳,获得10
4分钟前
失眠的冬易完成签到 ,获得积分10
5分钟前
所所应助胡小壳采纳,获得10
5分钟前
5分钟前
5分钟前
菜菜博士发布了新的文献求助10
5分钟前
菜菜博士完成签到,获得积分10
5分钟前
6分钟前
胡小壳发布了新的文献求助10
6分钟前
蝎子莱莱xth完成签到,获得积分10
6分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
6分钟前
Square完成签到,获得积分10
6分钟前
6分钟前
lling完成签到 ,获得积分10
6分钟前
开心每一天完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639795
求助须知:如何正确求助?哪些是违规求助? 4750612
关于积分的说明 15007386
捐赠科研通 4798008
什么是DOI,文献DOI怎么找? 2564098
邀请新用户注册赠送积分活动 1522944
关于科研通互助平台的介绍 1482630