荧光
甲醇
钙钛矿(结构)
发光
光致发光
量子产额
检出限
选择性
材料科学
光化学
重复性
化学
纳米技术
分析化学(期刊)
光电子学
有机化学
色谱法
光学
催化作用
物理
作者
Dongyang Li,Junhua Song,Yu Cheng,Xiao‐Min Wu,Yuyin Wang,Chuan‐Ju Sun,Cheng‐Yang Yue,Xiao‐Wu Lei
标识
DOI:10.1002/anie.202206437
摘要
A convenient and rapid detection method for methanol in ethanol remains a major challenge due to their indistinguishable physical properties. Herein, a novel fluorescence probe based on perovskite was successfully designed to overcome this bottleneck. We report a new zero-dimensional (0D) hybrid perovskite of [MP]2 Inx Sb1-x Cl7 ⋅ 6 H2 O (MP=2-methylpiperazine) displaying an unusual green light emission with near-unity photoluminescence quantum yield. Remarkably, this 0D perovskite exhibits reversible methanol-response luminescence switching between green and yellow color but fail in any other organic vapors. Even for blended alcohol solutions, the luminescent probe exhibits excellent sensing performance with multiple superiorities of rapid response time (30 s) and ultra-low detection limit (40 ppm), etc. Therefore, this 0D perovskite can be utilized as a perfect fluorescence probe to detect traces of methanol from ethanol with ultrahigh sensitivity, selectivity and repeatability. To the best of our knowledge, this work represents the first perovskite as fluorescence probe for methanol with wide potential in environmental monitoring and methanol detection, etc.
科研通智能强力驱动
Strongly Powered by AbleSci AI