Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation

计算机科学 分割 人工智能 特征(语言学) 残余物 像素 计算机视觉 卷积(计算机科学) 图像分割 模式识别(心理学) 算法 人工神经网络 语言学 哲学
作者
Wentao Liu,Huihua Yang,Tong Tian,Zhiwei Cao,Xipeng Pan,Weijin Xu,Jin Yang,Feng Gao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (9): 4623-4634 被引量:103
标识
DOI:10.1109/jbhi.2022.3188710
摘要

Vessel segmentation is critical for disease diagnosis and surgical planning. Recently, the vessel segmentation method based on deep learning has achieved outstanding performance. However, vessel segmentation remains challenging due to thin vessels with low contrast that easily lose spatial information in the traditional U-shaped segmentation network. To alleviate this problem, we propose a novel and straightforward full-resolution network (FR-UNet) that expands horizontally and vertically through a multiresolution convolution interactive mechanism while retaining full image resolution. In FR-UNet, the feature aggregation module integrates multiscale feature maps from adjacent stages to supplement high-level contextual information. The modified residual blocks continuously learn multiresolution representations to obtain a pixel-level accuracy prediction map. Moreover, we propose the dual-threshold iterative algorithm (DTI) to extract weak vessel pixels for improving vessel connectivity. The proposed method was evaluated on retinal vessel datasets (DRIVE, CHASE_DB1, and STARE) and coronary angiography datasets (DCA1 and CHUAC). The results demonstrate that FR-UNet outperforms state-of-the-art methods by achieving the highest Sen, AUC, F1, and IOU on most of the above-mentioned datasets with fewer parameters, and that DTI enhances vessel connectivity while greatly improving sensitivity. The code is available at: https://github.com/lseventeen/FR-UNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助wenze采纳,获得20
2秒前
VDC应助小韭菜采纳,获得30
3秒前
彳亍1117应助han采纳,获得10
4秒前
科研通AI5应助曾玉婷采纳,获得10
5秒前
6秒前
SciGPT应助方方采纳,获得10
6秒前
7秒前
董蓝天完成签到 ,获得积分10
8秒前
五颗梨完成签到,获得积分10
9秒前
Ava应助小全采纳,获得10
11秒前
微生发布了新的文献求助10
12秒前
Guo发布了新的文献求助10
12秒前
张军辉完成签到,获得积分10
14秒前
14秒前
zhen发布了新的文献求助10
14秒前
15秒前
17秒前
方方发布了新的文献求助10
19秒前
19秒前
19秒前
21秒前
无花果应助发文章采纳,获得10
21秒前
22秒前
港岛妹妹发布了新的文献求助10
22秒前
日落可以慢半拍应助Guo采纳,获得10
22秒前
彳亍1117应助Guo采纳,获得10
22秒前
23秒前
23秒前
想把太阳揣兜里应助方方采纳,获得10
23秒前
阿夏完成签到,获得积分10
24秒前
于水清发布了新的文献求助10
25秒前
MOON完成签到,获得积分10
25秒前
小全发布了新的文献求助10
26秒前
WSY发布了新的文献求助10
27秒前
27秒前
共享精神应助xs采纳,获得10
28秒前
dkkjdsfakjd完成签到,获得积分10
29秒前
剑指东方是为谁应助Huy_rin采纳,获得10
29秒前
方方完成签到,获得积分10
30秒前
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738374
求助须知:如何正确求助?哪些是违规求助? 3281845
关于积分的说明 10026729
捐赠科研通 2998684
什么是DOI,文献DOI怎么找? 1645363
邀请新用户注册赠送积分活动 782749
科研通“疑难数据库(出版商)”最低求助积分说明 749901