Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation

计算机科学 分割 人工智能 特征(语言学) 残余物 像素 计算机视觉 卷积(计算机科学) 图像分割 模式识别(心理学) 图像分辨率 算法 人工神经网络 语言学 哲学
作者
Wentao Liu,Huihua Yang,Tong Tian,Zhiwei Cao,Xipeng Pan,Weijin Xu,Jin Yang,Feng Gao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (9): 4623-4634 被引量:67
标识
DOI:10.1109/jbhi.2022.3188710
摘要

Vessel segmentation is critical for disease diagnosis and surgical planning. Recently, the vessel segmentation method based on deep learning has achieved outstanding performance. However, vessel segmentation remains challenging due to thin vessels with low contrast that easily lose spatial information in the traditional U-shaped segmentation network. To alleviate this problem, we propose a novel and straightforward full-resolution network (FR-UNet) that expands horizontally and vertically through a multiresolution convolution interactive mechanism while retaining full image resolution. In FR-UNet, the feature aggregation module integrates multiscale feature maps from adjacent stages to supplement high-level contextual information. The modified residual blocks continuously learn multiresolution representations to obtain a pixel-level accuracy prediction map. Moreover, we propose the dual-threshold iterative algorithm (DTI) to extract weak vessel pixels for improving vessel connectivity. The proposed method was evaluated on retinal vessel datasets (DRIVE, CHASE_DB1, and STARE) and coronary angiography datasets (DCA1 and CHUAC). The results demonstrate that FR-UNet outperforms state-of-the-art methods by achieving the highest Sen, AUC, F1, and IOU on most of the above-mentioned datasets with fewer parameters, and that DTI enhances vessel connectivity while greatly improving sensitivity. The code is available at: https://github.com/lseventeen/FR-UNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
uss完成签到,获得积分10
2秒前
关关完成签到,获得积分10
2秒前
打打应助nihaoxiaoai采纳,获得10
3秒前
研友_8Y26PL发布了新的文献求助10
3秒前
3秒前
ahua发布了新的文献求助30
3秒前
海北完成签到 ,获得积分10
4秒前
李健应助微尘之末采纳,获得10
4秒前
4秒前
能干的勒发布了新的文献求助10
5秒前
qing_he应助热木采纳,获得20
5秒前
5秒前
quhayley应助敬老院N号采纳,获得10
5秒前
6秒前
研友_84Wk7Z完成签到,获得积分10
6秒前
李健应助zzzwwwkkk采纳,获得10
6秒前
6秒前
6秒前
甲基绿完成签到,获得积分20
6秒前
落后新瑶完成签到,获得积分10
6秒前
7秒前
斯文败类应助鲜夕阳采纳,获得10
7秒前
8秒前
ding应助薄荷采纳,获得10
8秒前
9秒前
嘎嘎嘎嘎发布了新的文献求助10
9秒前
脑洞疼应助刘佳辉采纳,获得10
9秒前
吴雨峰完成签到,获得积分10
9秒前
蕾蕾发布了新的文献求助10
9秒前
9秒前
吃生肉的孙尚香完成签到,获得积分10
10秒前
研友_8Y26PL完成签到,获得积分10
10秒前
10秒前
10秒前
blueblue发布了新的文献求助10
10秒前
江鹿柒柒发布了新的文献求助10
11秒前
star完成签到,获得积分10
12秒前
12秒前
1257应助劣根采纳,获得10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152571
求助须知:如何正确求助?哪些是违规求助? 2803797
关于积分的说明 7855643
捐赠科研通 2461450
什么是DOI,文献DOI怎么找? 1310300
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782