Battery health management using physics-informed machine learning: Online degradation modeling and remaining useful life prediction

电池(电) 降级(电信) 可靠性工程 计算机科学 机器学习 工程类 人工智能 电气工程 物理 量子力学 功率(物理)
作者
Junchuan Shi,Alexis V. Rivera,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:179: 109347-109347 被引量:37
标识
DOI:10.1016/j.ymssp.2022.109347
摘要

• The physics-informed machine learning method combines a physics-based degradation model and a long short-term memory model. • The physics-based model considers the effects of operating conditions such as cycle time, environmental temperature, and loading condition on the degradation behavior of lithium-ion batteries. • The machine learning model learns the effects of the degradation behavior and operating conditions on the physical model using online monitoring data. • Experimental results have shown that the proposed method can accurately model lithium-ion battery degradation behavior as well as predict its RUL under different operating conditions. Lithium-ion batteries have been extensively used to power portable electronics, electric vehicles, and unmanned aerial vehicles over the past decade. Aging decreases the capacity of Lithium-ion batteries. Therefore, accurate remaining useful life (RUL) prediction is critical to the reliability, safety, and efficiency of the Lithium-ion battery-powered systems. However, battery aging is a complex electrochemical process affected by internal aging mechanisms and operating conditions (e.g., cycle time, environmental temperature, and loading condition). In this paper, a physics-informed machine learning method is proposed to model the degradation trend and predict the RUL of Lithium-ion batteries while accounting for battery health and operating conditions. The proposed physics-informed long short-term memory (PI-LSTM) model combines a physics-based calendar and cycle aging (CCA) model with an LSTM layer. The CCA model measures the aging effect of Lithium-ion batteries by combining five operating stress factor models. The PI-LSTM uses an LSTM layer to learn the relationship between the degradation trend determined by the CCA model and the online monitoring data of different cycles (i.e., voltage, current, and cell temperature). After the degradation pattern of a battery is estimated by the PI-LSTM model, another LSTM model is then used to predict the future degradation and remaining useful life (RUL) of the battery by learning the degradation trend estimated by the PI-LSTM model. Monitoring data of eleven Lithium-ion batteries under different operating conditions was used to demonstrate the proposed method. Experimental results have shown that the proposed method can accurately model the degradation behavior as well as predict the RUL of Lithium-ion batteries under different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助drjim采纳,获得10
刚刚
1秒前
星辰大海应助...采纳,获得10
2秒前
活力思枫完成签到,获得积分10
2秒前
4秒前
李健应助文丽采纳,获得10
4秒前
4秒前
冬虫夏草发布了新的文献求助10
5秒前
5秒前
小石头完成签到,获得积分10
6秒前
感动寻琴完成签到,获得积分20
6秒前
zzzzz完成签到,获得积分10
9秒前
starofjlu应助小杨哥采纳,获得30
9秒前
海心关注了科研通微信公众号
10秒前
agrlook完成签到,获得积分10
11秒前
12秒前
anbiii完成签到,获得积分10
14秒前
15秒前
Dream点壹发布了新的文献求助10
15秒前
荼蘼完成签到,获得积分10
16秒前
噢耶驳回了master应助
16秒前
Jack发布了新的文献求助10
21秒前
21秒前
科目三应助知性的笑槐采纳,获得10
22秒前
慕青应助雪白映天采纳,获得10
25秒前
wanci应助叶白山采纳,获得30
25秒前
26秒前
26秒前
英俊的铭应助FZY采纳,获得10
27秒前
29秒前
int0030应助zzd12318采纳,获得10
30秒前
31秒前
gunanshu发布了新的文献求助10
31秒前
轻松黑裤发布了新的文献求助10
31秒前
32秒前
Jasper应助tigger采纳,获得30
32秒前
叙温雨发布了新的文献求助10
33秒前
34秒前
34秒前
Kabylake63完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149204
求助须知:如何正确求助?哪些是违规求助? 2800294
关于积分的说明 7839427
捐赠科研通 2457845
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628436
版权声明 601706