Battery health management using physics-informed machine learning: Online degradation modeling and remaining useful life prediction

电池(电) 失效物理学 可靠性(半导体) 降级(电信) 锂离子电池 可靠性工程 锂(药物) 计算机科学 工程类 模拟 人工智能 汽车工程 电气工程 物理 内分泌学 医学 功率(物理) 量子力学
作者
Junchuan Shi,Alexis V. Rivera,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:179: 109347-109347 被引量:91
标识
DOI:10.1016/j.ymssp.2022.109347
摘要

• The physics-informed machine learning method combines a physics-based degradation model and a long short-term memory model. • The physics-based model considers the effects of operating conditions such as cycle time, environmental temperature, and loading condition on the degradation behavior of lithium-ion batteries. • The machine learning model learns the effects of the degradation behavior and operating conditions on the physical model using online monitoring data. • Experimental results have shown that the proposed method can accurately model lithium-ion battery degradation behavior as well as predict its RUL under different operating conditions. Lithium-ion batteries have been extensively used to power portable electronics, electric vehicles, and unmanned aerial vehicles over the past decade. Aging decreases the capacity of Lithium-ion batteries. Therefore, accurate remaining useful life (RUL) prediction is critical to the reliability, safety, and efficiency of the Lithium-ion battery-powered systems. However, battery aging is a complex electrochemical process affected by internal aging mechanisms and operating conditions (e.g., cycle time, environmental temperature, and loading condition). In this paper, a physics-informed machine learning method is proposed to model the degradation trend and predict the RUL of Lithium-ion batteries while accounting for battery health and operating conditions. The proposed physics-informed long short-term memory (PI-LSTM) model combines a physics-based calendar and cycle aging (CCA) model with an LSTM layer. The CCA model measures the aging effect of Lithium-ion batteries by combining five operating stress factor models. The PI-LSTM uses an LSTM layer to learn the relationship between the degradation trend determined by the CCA model and the online monitoring data of different cycles (i.e., voltage, current, and cell temperature). After the degradation pattern of a battery is estimated by the PI-LSTM model, another LSTM model is then used to predict the future degradation and remaining useful life (RUL) of the battery by learning the degradation trend estimated by the PI-LSTM model. Monitoring data of eleven Lithium-ion batteries under different operating conditions was used to demonstrate the proposed method. Experimental results have shown that the proposed method can accurately model the degradation behavior as well as predict the RUL of Lithium-ion batteries under different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
997完成签到,获得积分10
1秒前
QQ发布了新的文献求助10
2秒前
沐风完成签到,获得积分10
2秒前
阿怪完成签到,获得积分10
3秒前
3秒前
Moi完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
高高紫烟完成签到,获得积分10
6秒前
YY发布了新的文献求助10
6秒前
Dhui发布了新的文献求助10
7秒前
无知者海生完成签到 ,获得积分10
7秒前
NECMute完成签到,获得积分10
7秒前
在水一方应助默默采纳,获得10
7秒前
科研通AI5应助janevava采纳,获得10
7秒前
清爽翠芙发布了新的文献求助30
8秒前
9秒前
9秒前
9秒前
时尚战斗机完成签到,获得积分10
10秒前
大模型应助慕子默采纳,获得10
10秒前
失眠的珩完成签到,获得积分10
10秒前
追寻的丹烟完成签到,获得积分10
11秒前
11秒前
11秒前
Jasper应助激动的小笼包采纳,获得10
12秒前
12秒前
认真的山兰完成签到,获得积分10
12秒前
李爱国应助怡然的怀莲采纳,获得10
13秒前
承允关注了科研通微信公众号
13秒前
琉璃果冻发布了新的文献求助10
14秒前
14秒前
mouxq发布了新的文献求助10
14秒前
清爽翠芙完成签到,获得积分10
16秒前
16秒前
桐桐应助orange采纳,获得30
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602889
求助须知:如何正确求助?哪些是违规求助? 4011856
关于积分的说明 12420674
捐赠科研通 3692191
什么是DOI,文献DOI怎么找? 2035504
邀请新用户注册赠送积分活动 1068692
科研通“疑难数据库(出版商)”最低求助积分说明 953208