已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Battery health management using physics-informed machine learning: Online degradation modeling and remaining useful life prediction

电池(电) 失效物理学 可靠性(半导体) 降级(电信) 锂离子电池 可靠性工程 锂(药物) 计算机科学 工程类 模拟 人工智能 汽车工程 电气工程 物理 医学 内分泌学 功率(物理) 量子力学
作者
Junchuan Shi,Alexis V. Rivera,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:179: 109347-109347 被引量:91
标识
DOI:10.1016/j.ymssp.2022.109347
摘要

• The physics-informed machine learning method combines a physics-based degradation model and a long short-term memory model. • The physics-based model considers the effects of operating conditions such as cycle time, environmental temperature, and loading condition on the degradation behavior of lithium-ion batteries. • The machine learning model learns the effects of the degradation behavior and operating conditions on the physical model using online monitoring data. • Experimental results have shown that the proposed method can accurately model lithium-ion battery degradation behavior as well as predict its RUL under different operating conditions. Lithium-ion batteries have been extensively used to power portable electronics, electric vehicles, and unmanned aerial vehicles over the past decade. Aging decreases the capacity of Lithium-ion batteries. Therefore, accurate remaining useful life (RUL) prediction is critical to the reliability, safety, and efficiency of the Lithium-ion battery-powered systems. However, battery aging is a complex electrochemical process affected by internal aging mechanisms and operating conditions (e.g., cycle time, environmental temperature, and loading condition). In this paper, a physics-informed machine learning method is proposed to model the degradation trend and predict the RUL of Lithium-ion batteries while accounting for battery health and operating conditions. The proposed physics-informed long short-term memory (PI-LSTM) model combines a physics-based calendar and cycle aging (CCA) model with an LSTM layer. The CCA model measures the aging effect of Lithium-ion batteries by combining five operating stress factor models. The PI-LSTM uses an LSTM layer to learn the relationship between the degradation trend determined by the CCA model and the online monitoring data of different cycles (i.e., voltage, current, and cell temperature). After the degradation pattern of a battery is estimated by the PI-LSTM model, another LSTM model is then used to predict the future degradation and remaining useful life (RUL) of the battery by learning the degradation trend estimated by the PI-LSTM model. Monitoring data of eleven Lithium-ion batteries under different operating conditions was used to demonstrate the proposed method. Experimental results have shown that the proposed method can accurately model the degradation behavior as well as predict the RUL of Lithium-ion batteries under different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Strange发布了新的文献求助10
4秒前
椰蓉面包糠完成签到,获得积分10
5秒前
无限冰香发布了新的文献求助10
7秒前
8秒前
蒲公英完成签到 ,获得积分10
8秒前
9秒前
10秒前
熊i发布了新的文献求助10
12秒前
咩咩兔完成签到,获得积分10
12秒前
ywayw发布了新的文献求助10
14秒前
高山七石发布了新的文献求助10
16秒前
无限冰香完成签到,获得积分10
17秒前
林希冀发布了新的文献求助10
19秒前
dominic12361完成签到 ,获得积分10
21秒前
coke发布了新的文献求助10
23秒前
勤奋的立果完成签到 ,获得积分10
25秒前
柏林寒冬应助养猪骑士采纳,获得10
28秒前
29秒前
ftl完成签到 ,获得积分10
30秒前
小熊熊完成签到,获得积分10
31秒前
歪方橘发布了新的文献求助10
32秒前
38秒前
林希冀完成签到,获得积分10
38秒前
38秒前
JamesPei应助chenfaju采纳,获得10
39秒前
小蘑菇应助山猪吃细糠采纳,获得10
40秒前
深情安青应助SDNUDRUG采纳,获得10
40秒前
莫道桑榆完成签到,获得积分10
40秒前
42秒前
xunuo发布了新的文献求助10
42秒前
学术小白完成签到,获得积分10
43秒前
MchemG发布了新的文献求助20
43秒前
研友_59AB85完成签到,获得积分10
44秒前
悠木完成签到 ,获得积分10
45秒前
羊羔蓉完成签到,获得积分10
46秒前
47秒前
Zeno完成签到 ,获得积分10
49秒前
fransiccarey完成签到,获得积分10
50秒前
小王贼棒发布了新的文献求助10
53秒前
53秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513192
关于积分的说明 11166764
捐赠科研通 3248420
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874936
科研通“疑难数据库(出版商)”最低求助积分说明 804629