Vision-Enhanced and Consensus-Aware Transformer for Image Captioning

计算机科学 隐藏字幕 人工智能 编码器 特征学习 自然语言处理 常识 卷积神经网络 图形 计算机视觉 知识表示与推理 图像(数学) 理论计算机科学 操作系统
作者
Shan Cao,Gaoyun An,Zhenxing Zheng,Zhiyong Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 7005-7018 被引量:25
标识
DOI:10.1109/tcsvt.2022.3178844
摘要

Image captioning generates descriptions in a natural language for a given image. Due to its great potential for a wide range of applications, many deep learning based-methods have been proposed. The co-occurrence of words such as mouse and keyboard, constitutes commonsense knowledge, which is referred to as consensus. However, it is challenging to consider commonsense knowledge in producing captions that have rich, natural, and meaningful semantics. In this paper, a Vision-enhanced and Consensus-aware Transformer (VCT) is proposed to exploit both visual information and consensus knowledge for image captioning with three key components: a vision-enhanced encoder, consensus-aware knowledge representation generator, and consensus-aware decoder. The vision-enhanced encoder extends the vanilla self-attention module with a memory-based attention module and a visual perception module for learning better visual representation of an image. Specifically, the relationships between regions in an image and the image’s global context are leveraged with scene memory in the memory-based attention module. The visual perception module further enhances the correlation among neighboring tokens in both the spatial and channel-wise dimensions. To learn consensus-aware representations, a word correlation graph is constructed by computing the statistical co-occurrence between semantic concepts. Then consensus knowledge can be acquired using a graph convolutional network in the consensus-aware knowledge representation generator. Finally, such consensus knowledge is integrated into the consensus-aware decoder through consensus memory and a knowledge-based control module to produce a caption. Experimental results on two popular benchmark datasets (MSCOCO and Flickr30k) demonstrate that our proposed model achieves state-of-the-art performance. Extensive ablation studies also validate the effectiveness of each component.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小菜完成签到 ,获得积分10
刚刚
Starry发布了新的文献求助10
1秒前
1秒前
animages发布了新的文献求助10
1秒前
第二人生完成签到 ,获得积分10
2秒前
888完成签到,获得积分10
2秒前
桐桐应助Clover04采纳,获得10
2秒前
3秒前
武玉坤完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助bei采纳,获得10
5秒前
5秒前
5秒前
gaigai完成签到,获得积分10
6秒前
阿花阿花完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助30
7秒前
硕大的眼发布了新的文献求助10
7秒前
Islet发布了新的文献求助10
7秒前
7秒前
8秒前
小老板的手抓饼完成签到,获得积分10
8秒前
闪闪芷波发布了新的文献求助10
9秒前
蟹老板完成签到,获得积分10
10秒前
鱼香完成签到,获得积分20
10秒前
武玉坤发布了新的文献求助10
10秒前
11秒前
11秒前
洛子夜发布了新的文献求助10
11秒前
安静的雅香完成签到,获得积分10
13秒前
水月发布了新的文献求助10
13秒前
迟大猫应助925采纳,获得10
14秒前
14秒前
鱼香发布了新的文献求助10
14秒前
z!完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
小橙完成签到 ,获得积分10
15秒前
15秒前
JamesPei应助Islet采纳,获得10
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771