ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning

计算机科学 图形 编码(集合论) 相似性(几何) 班级(哲学) 人工智能 源代码 代表(政治) 机器学习 模式识别(心理学) 理论计算机科学 图像(数学) 程序设计语言 集合(抽象数据类型) 政治 政治学 法学
作者
Jun Xia,Lirong Wu,Ge Wang,Jintao Chen,Stan Z. Li
出处
期刊:Cornell University - arXiv 被引量:20
标识
DOI:10.48550/arxiv.2110.02027
摘要

Contrastive Learning (CL) has emerged as a dominant technique for unsupervised representation learning which embeds augmented versions of the anchor close to each other (positive samples) and pushes the embeddings of other samples (negatives) apart. As revealed in recent studies, CL can benefit from hard negatives (negatives that are most similar to the anchor). However, we observe limited benefits when we adopt existing hard negative mining techniques of other domains in Graph Contrastive Learning (GCL). We perform both experimental and theoretical analysis on this phenomenon and find it can be attributed to the message passing of Graph Neural Networks (GNNs). Unlike CL in other domains, most hard negatives are potentially false negatives (negatives that share the same class with the anchor) if they are selected merely according to the similarities between anchor and themselves, which will undesirably push away the samples of the same class. To remedy this deficiency, we propose an effective method, dubbed \textbf{ProGCL}, to estimate the probability of a negative being true one, which constitutes a more suitable measure for negatives' hardness together with similarity. Additionally, we devise two schemes (i.e., \textbf{ProGCL-weight} and \textbf{ProGCL-mix}) to boost the performance of GCL. Extensive experiments demonstrate that ProGCL brings notable and consistent improvements over base GCL methods and yields multiple state-of-the-art results on several unsupervised benchmarks or even exceeds the performance of supervised ones. Also, ProGCL is readily pluggable into various negatives-based GCL methods for performance improvement. We release the code at \textcolor{magenta}{\url{https://github.com/junxia97/ProGCL}}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL完成签到,获得积分10
刚刚
3秒前
LL发布了新的文献求助10
3秒前
李爱国应助bei采纳,获得10
6秒前
科研通AI5应助哈哈哈采纳,获得10
7秒前
不敢装睡发布了新的文献求助10
7秒前
7秒前
微兔小妹完成签到 ,获得积分10
8秒前
非而者厚应助isonomia采纳,获得200
10秒前
zy3637发布了新的文献求助20
10秒前
12秒前
13秒前
17秒前
18秒前
cxdhxu完成签到 ,获得积分10
18秒前
文静达发布了新的文献求助10
18秒前
共享精神应助Kvolu29采纳,获得10
18秒前
JGCATZ发布了新的文献求助200
19秒前
简单的凡儿完成签到,获得积分10
19秒前
香蕉觅云应助wuxunxun2015采纳,获得10
21秒前
bkagyin应助天天小女孩采纳,获得10
23秒前
lv发布了新的文献求助10
24秒前
26秒前
CipherSage应助super采纳,获得10
28秒前
29秒前
30秒前
Akim应助lv采纳,获得10
31秒前
31秒前
32秒前
wttt完成签到,获得积分10
32秒前
zzz完成签到,获得积分10
33秒前
不敢装睡发布了新的文献求助10
33秒前
团1111发布了新的文献求助10
34秒前
MchemG应助太花采纳,获得10
35秒前
内向的青荷完成签到,获得积分10
35秒前
xiaomaxia发布了新的文献求助10
36秒前
zxh完成签到,获得积分10
36秒前
37秒前
叶一只完成签到,获得积分10
38秒前
文静达完成签到,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761895
求助须知:如何正确求助?哪些是违规求助? 3305631
关于积分的说明 10135016
捐赠科研通 3019709
什么是DOI,文献DOI怎么找? 1658368
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754766