ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning

计算机科学 图形 编码(集合论) 相似性(几何) 班级(哲学) 人工智能 源代码 代表(政治) 机器学习 模式识别(心理学) 理论计算机科学 图像(数学) 程序设计语言 集合(抽象数据类型) 政治 政治学 法学
作者
Jun Xia,Lirong Wu,Ge Wang,Jintao Chen,Stan Z. Li
出处
期刊:Cornell University - arXiv 被引量:20
标识
DOI:10.48550/arxiv.2110.02027
摘要

Contrastive Learning (CL) has emerged as a dominant technique for unsupervised representation learning which embeds augmented versions of the anchor close to each other (positive samples) and pushes the embeddings of other samples (negatives) apart. As revealed in recent studies, CL can benefit from hard negatives (negatives that are most similar to the anchor). However, we observe limited benefits when we adopt existing hard negative mining techniques of other domains in Graph Contrastive Learning (GCL). We perform both experimental and theoretical analysis on this phenomenon and find it can be attributed to the message passing of Graph Neural Networks (GNNs). Unlike CL in other domains, most hard negatives are potentially false negatives (negatives that share the same class with the anchor) if they are selected merely according to the similarities between anchor and themselves, which will undesirably push away the samples of the same class. To remedy this deficiency, we propose an effective method, dubbed \textbf{ProGCL}, to estimate the probability of a negative being true one, which constitutes a more suitable measure for negatives' hardness together with similarity. Additionally, we devise two schemes (i.e., \textbf{ProGCL-weight} and \textbf{ProGCL-mix}) to boost the performance of GCL. Extensive experiments demonstrate that ProGCL brings notable and consistent improvements over base GCL methods and yields multiple state-of-the-art results on several unsupervised benchmarks or even exceeds the performance of supervised ones. Also, ProGCL is readily pluggable into various negatives-based GCL methods for performance improvement. We release the code at \textcolor{magenta}{\url{https://github.com/junxia97/ProGCL}}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碎冰冰发布了新的文献求助30
刚刚
1秒前
1秒前
lxl1996发布了新的文献求助10
1秒前
2秒前
赘婿应助伍寒烟采纳,获得10
2秒前
2秒前
4秒前
21完成签到,获得积分10
5秒前
在水一方应助Alex采纳,获得10
5秒前
阴天快乐完成签到,获得积分10
6秒前
隐形曼青应助微笑的觅夏采纳,获得10
7秒前
123发布了新的文献求助10
7秒前
汉堡小屁完成签到,获得积分10
8秒前
tectextey完成签到,获得积分10
8秒前
潘爱玲发布了新的文献求助10
8秒前
8秒前
哈西辣妈完成签到,获得积分10
8秒前
zhaomr完成签到,获得积分10
8秒前
9秒前
桐桐应助浑续采纳,获得30
10秒前
Wangyingjie5发布了新的文献求助10
11秒前
123完成签到,获得积分10
12秒前
feifei完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
嘿嘿应助薯片和派采纳,获得30
15秒前
笑点低的怀莲完成签到,获得积分10
15秒前
SCINEXUS应助ruanyh采纳,获得20
15秒前
15秒前
悠悠完成签到,获得积分10
16秒前
16秒前
卓疾发布了新的文献求助10
17秒前
Tu发布了新的文献求助10
17秒前
dada完成签到,获得积分10
17秒前
xyy001完成签到,获得积分10
18秒前
18秒前
充电宝应助pinging采纳,获得10
19秒前
Alex发布了新的文献求助10
19秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083756
求助须知:如何正确求助?哪些是违规求助? 2737102
关于积分的说明 7543295
捐赠科研通 2386458
什么是DOI,文献DOI怎么找? 1265484
科研通“疑难数据库(出版商)”最低求助积分说明 613100
版权声明 597951