ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning

计算机科学 图形 编码(集合论) 相似性(几何) 班级(哲学) 人工智能 源代码 代表(政治) 机器学习 模式识别(心理学) 理论计算机科学 图像(数学) 程序设计语言 政治 政治学 集合(抽象数据类型) 法学
作者
Jun Xia,Lirong Wu,Ge Wang,Jintao Chen,Stan Z. Li
出处
期刊:Cornell University - arXiv 被引量:20
标识
DOI:10.48550/arxiv.2110.02027
摘要

Contrastive Learning (CL) has emerged as a dominant technique for unsupervised representation learning which embeds augmented versions of the anchor close to each other (positive samples) and pushes the embeddings of other samples (negatives) apart. As revealed in recent studies, CL can benefit from hard negatives (negatives that are most similar to the anchor). However, we observe limited benefits when we adopt existing hard negative mining techniques of other domains in Graph Contrastive Learning (GCL). We perform both experimental and theoretical analysis on this phenomenon and find it can be attributed to the message passing of Graph Neural Networks (GNNs). Unlike CL in other domains, most hard negatives are potentially false negatives (negatives that share the same class with the anchor) if they are selected merely according to the similarities between anchor and themselves, which will undesirably push away the samples of the same class. To remedy this deficiency, we propose an effective method, dubbed \textbf{ProGCL}, to estimate the probability of a negative being true one, which constitutes a more suitable measure for negatives' hardness together with similarity. Additionally, we devise two schemes (i.e., \textbf{ProGCL-weight} and \textbf{ProGCL-mix}) to boost the performance of GCL. Extensive experiments demonstrate that ProGCL brings notable and consistent improvements over base GCL methods and yields multiple state-of-the-art results on several unsupervised benchmarks or even exceeds the performance of supervised ones. Also, ProGCL is readily pluggable into various negatives-based GCL methods for performance improvement. We release the code at \textcolor{magenta}{\url{https://github.com/junxia97/ProGCL}}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘艳阳发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
mix完成签到,获得积分10
2秒前
在水一方应助Leeee采纳,获得10
3秒前
Darline完成签到 ,获得积分10
5秒前
5秒前
6秒前
优雅沛文发布了新的文献求助10
6秒前
在水一方应助THF采纳,获得10
7秒前
木流留马发布了新的文献求助10
7秒前
CipherSage应助wen采纳,获得10
7秒前
8秒前
9秒前
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
pp应助科研通管家采纳,获得50
9秒前
9秒前
赘婿应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
Owen应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777888
求助须知:如何正确求助?哪些是违规求助? 5636349
关于积分的说明 15447020
捐赠科研通 4909811
什么是DOI,文献DOI怎么找? 2641951
邀请新用户注册赠送积分活动 1589821
关于科研通互助平台的介绍 1544311