Mechanistically Novel Frontal‐Inspired In Situ Photopolymerization: An Efficient Electrode|Electrolyte Interface Engineering Method for High Energy Lithium Metal Polymer Batteries

光致聚合物 材料科学 聚合 电解质 聚合物 固化(化学) 化学工程 单体 紫外线固化 电极 纳米技术 高分子化学 复合材料 化学 物理化学 工程类
作者
Ishamol Shaji,Diddo Diddens,Martin Winter,Jijeesh Ravi Nair
出处
期刊:Energy & environmental materials [Wiley]
卷期号:6 (6) 被引量:6
标识
DOI:10.1002/eem2.12469
摘要

The solvent‐free in situ polymerization technique has the potential to tailor‐make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries (LMPBs). Hence, much attention has been given to the eco‐friendly and rapid ultraviolet (UV)‐induced in situ photopolymerization process to prepare solid‐state polymer electrolytes. In this respect, an innovative method is proposed here to overcome the challenges of UV‐induced photopolymerization (UV‐curing) in the zones where UV‐light cannot penetrate, especially in LMPBs where thick electrodes are used. The proposed frontal‐inspired photopolymerization (FIPP) process is a diverged frontal‐based technique that uses two classes (dual) of initiators to improve the slow reaction kinetics of allyl‐based monomers/oligomers by at least 50% compared with the conventional UV‐curing process. The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations. Indeed, the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV‐irradiation step as the case with the classical frontal photopolymerization technique. Besides, the FIPP‐based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes. Furthermore, the LMPB cells fabricated using the in situ‐FIPP process with high mass loading LiFePO 4 electrodes (5.2 mg cm ‐2 ) demonstrate higher rate capability, and a 50% increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large‐scale solid‐state battery production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wind应助海阔天空独立思考采纳,获得10
刚刚
Lee发布了新的文献求助10
刚刚
1秒前
希望天下0贩的0应助银玥采纳,获得10
1秒前
1秒前
温柔嚣张完成签到 ,获得积分10
2秒前
yummy小明8888完成签到 ,获得积分10
2秒前
3秒前
兴奋的菠萝完成签到,获得积分10
3秒前
棉花完成签到 ,获得积分10
4秒前
5秒前
8秒前
8秒前
倩倩发布了新的文献求助10
9秒前
炙热夜绿完成签到 ,获得积分10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
花城完成签到 ,获得积分10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
沉静的煎蛋完成签到,获得积分10
10秒前
bkagyin应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
asdfzxcv应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
zhanlan完成签到,获得积分10
11秒前
11秒前
asdfzxcv应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812