Mechanistically Novel Frontal‐Inspired In Situ Photopolymerization: An Efficient Electrode|Electrolyte Interface Engineering Method for High Energy Lithium Metal Polymer Batteries

光致聚合物 材料科学 聚合 电解质 聚合物 固化(化学) 化学工程 单体 紫外线固化 电极 纳米技术 高分子化学 复合材料 化学 物理化学 工程类
作者
Ishamol Shaji,Diddo Diddens,Martin Winter,Jijeesh Ravi Nair
出处
期刊:Energy & environmental materials 卷期号:6 (6) 被引量:3
标识
DOI:10.1002/eem2.12469
摘要

The solvent‐free in situ polymerization technique has the potential to tailor‐make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries (LMPBs). Hence, much attention has been given to the eco‐friendly and rapid ultraviolet (UV)‐induced in situ photopolymerization process to prepare solid‐state polymer electrolytes. In this respect, an innovative method is proposed here to overcome the challenges of UV‐induced photopolymerization (UV‐curing) in the zones where UV‐light cannot penetrate, especially in LMPBs where thick electrodes are used. The proposed frontal‐inspired photopolymerization (FIPP) process is a diverged frontal‐based technique that uses two classes (dual) of initiators to improve the slow reaction kinetics of allyl‐based monomers/oligomers by at least 50% compared with the conventional UV‐curing process. The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations. Indeed, the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV‐irradiation step as the case with the classical frontal photopolymerization technique. Besides, the FIPP‐based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes. Furthermore, the LMPB cells fabricated using the in situ‐FIPP process with high mass loading LiFePO 4 electrodes (5.2 mg cm ‐2 ) demonstrate higher rate capability, and a 50% increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large‐scale solid‐state battery production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡从阳完成签到,获得积分10
刚刚
刚刚
formulaonef1完成签到,获得积分10
刚刚
刚刚
红书包发布了新的文献求助10
1秒前
ainiowo发布了新的文献求助10
1秒前
Ruby完成签到,获得积分10
1秒前
2秒前
attilio发布了新的文献求助10
2秒前
3秒前
Hima完成签到,获得积分10
3秒前
haha发布了新的文献求助10
3秒前
111完成签到,获得积分10
4秒前
13223456完成签到,获得积分10
4秒前
CipherSage应助花Cheung采纳,获得10
4秒前
上上谦完成签到,获得积分10
4秒前
4秒前
Chief完成签到,获得积分10
5秒前
希望天下0贩的0应助leaf采纳,获得10
5秒前
刘宁完成签到 ,获得积分10
5秒前
长情的听兰完成签到,获得积分10
6秒前
小米完成签到,获得积分10
7秒前
Orange应助可靠的寒风采纳,获得10
7秒前
义气的巨人完成签到,获得积分10
7秒前
所所应助suyunzhe采纳,获得10
7秒前
清脆映真完成签到,获得积分10
8秒前
LOFATIN完成签到,获得积分10
8秒前
搜集达人应助zhenggggg采纳,获得10
9秒前
直率的宛海完成签到,获得积分10
9秒前
闫132发布了新的文献求助10
9秒前
Steven完成签到,获得积分10
10秒前
13223456发布了新的文献求助10
11秒前
潇潇完成签到 ,获得积分10
11秒前
烟花应助英勇的棒棒糖采纳,获得10
11秒前
11秒前
12秒前
XYN1完成签到,获得积分10
12秒前
12秒前
12秒前
阮阮发布了新的文献求助10
12秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142981
求助须知:如何正确求助?哪些是违规求助? 2794000
关于积分的说明 7809074
捐赠科研通 2450260
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601374