Bridging the g-C3N4 Interlayers for Enhanced Photocatalysis

光催化 石墨氮化碳 兴奋剂 带隙 催化作用 材料科学 可见光谱 共轭体系 电子结构 载流子 氮化碳 聚合 纳米技术 化学 光化学 光电子学 计算化学 有机化学 聚合物 复合材料
作者
Ting Xiong,Wanglai Cen,Yuxin Zhang,Fan Dong
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:6 (4): 2462-2472 被引量:1100
标识
DOI:10.1021/acscatal.5b02922
摘要

Graphitic carbon nitride (g-C3N4) has been widely investigated and applied in photocatalysis and catalysis, but its performance is still unsatisfactory. Here, we demonstrated that K-doped g-C3N4 with a unique electronic structure possessed highly enhanced visible-light photocatalytic performance for NO removal, which was superior to Na-doped g-C3N4. DFT calculations revealed that K or Na doping can narrow the bandgap of g-C3N4. K atoms, intercalated into the g-C3N4 interlayer via bridging the layers, could decrease the electronic localization and extend the π conjugated system, whereas Na atoms tended to be doped into the CN planes and increased the in-planar electron density. On the basis of theoretical calculation results, we synthesized K-doped g-C3N4 and Na-doped g-C3N4 by a facile thermal polymerization method. Consistent with the theoretical prediction, it was found that K was intercalated into the space between the g-C3N4 layers. The K-intercalated g-C3N4 sample showed increased visible-light absorption, efficient separation of charge carriers, and strong oxidation capability, benefiting from the narrowed band gap, extended π conjugated systems, and positive-shifted valence band position, respectively. Despite that the Na-doped g-C3N4 exhibited narrowed bandgap, the high recombination rate of carriers resulted in the reduced photocatalytic performance. Our discovery provides a promising route to manipulate the photocatalytic activity simply by introducing K atoms in the interlayer and gains a deep understanding of doping chemistry with congeners. The present work could provide new insights into the mechanistic understanding and the design of electronically optimized layered photocatalysts for enhanced solar energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷酷的松思完成签到,获得积分10
1秒前
糕糕完成签到 ,获得积分10
1秒前
龙龍泷发布了新的文献求助10
1秒前
汤哈哈哈哈完成签到,获得积分10
2秒前
霸气咖啡豆完成签到,获得积分10
3秒前
3秒前
97完成签到,获得积分10
3秒前
seankang发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助英勇的绮烟采纳,获得10
4秒前
4秒前
呆萌的xue完成签到,获得积分10
5秒前
killer完成签到,获得积分10
5秒前
田様应助噜啦啦采纳,获得10
5秒前
5秒前
ruirui_love发布了新的文献求助10
5秒前
舒适静丹完成签到,获得积分10
5秒前
Wcy发布了新的文献求助10
6秒前
ljx发布了新的文献求助10
6秒前
nail发布了新的文献求助10
6秒前
赘婿应助flylmy2008采纳,获得10
6秒前
NexusExplorer应助朝伟呵采纳,获得30
6秒前
6秒前
慕青应助怡然平萱采纳,获得10
7秒前
8秒前
堇妗完成签到,获得积分10
8秒前
爱撒娇的飞烟完成签到 ,获得积分10
10秒前
四氟乙烯完成签到,获得积分10
10秒前
11秒前
11秒前
zeng完成签到,获得积分20
11秒前
11秒前
朝朝不归日完成签到,获得积分20
12秒前
12秒前
13秒前
congcong完成签到,获得积分10
13秒前
稳重盼夏发布了新的文献求助10
13秒前
张依蓓发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716