Bridging the g-C3N4 Interlayers for Enhanced Photocatalysis

光催化 石墨氮化碳 兴奋剂 带隙 催化作用 材料科学 可见光谱 共轭体系 电子结构 载流子 氮化碳 聚合 纳米技术 化学 光化学 光电子学 计算化学 有机化学 聚合物 复合材料
作者
Ting Xiong,Wanglai Cen,Yuxin Zhang,Fan Dong
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:6 (4): 2462-2472 被引量:1091
标识
DOI:10.1021/acscatal.5b02922
摘要

Graphitic carbon nitride (g-C3N4) has been widely investigated and applied in photocatalysis and catalysis, but its performance is still unsatisfactory. Here, we demonstrated that K-doped g-C3N4 with a unique electronic structure possessed highly enhanced visible-light photocatalytic performance for NO removal, which was superior to Na-doped g-C3N4. DFT calculations revealed that K or Na doping can narrow the bandgap of g-C3N4. K atoms, intercalated into the g-C3N4 interlayer via bridging the layers, could decrease the electronic localization and extend the π conjugated system, whereas Na atoms tended to be doped into the CN planes and increased the in-planar electron density. On the basis of theoretical calculation results, we synthesized K-doped g-C3N4 and Na-doped g-C3N4 by a facile thermal polymerization method. Consistent with the theoretical prediction, it was found that K was intercalated into the space between the g-C3N4 layers. The K-intercalated g-C3N4 sample showed increased visible-light absorption, efficient separation of charge carriers, and strong oxidation capability, benefiting from the narrowed band gap, extended π conjugated systems, and positive-shifted valence band position, respectively. Despite that the Na-doped g-C3N4 exhibited narrowed bandgap, the high recombination rate of carriers resulted in the reduced photocatalytic performance. Our discovery provides a promising route to manipulate the photocatalytic activity simply by introducing K atoms in the interlayer and gains a deep understanding of doping chemistry with congeners. The present work could provide new insights into the mechanistic understanding and the design of electronically optimized layered photocatalysts for enhanced solar energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科烟生完成签到,获得积分10
1秒前
紫婧完成签到,获得积分10
2秒前
2秒前
feng完成签到,获得积分10
3秒前
4秒前
纳米果发布了新的文献求助10
4秒前
夸父完成签到,获得积分10
4秒前
5秒前
5秒前
小凯发布了新的文献求助10
6秒前
秋月黄完成签到 ,获得积分10
7秒前
小蘑菇应助傻傻的野狼采纳,获得10
7秒前
7秒前
李常轩发布了新的文献求助10
8秒前
8秒前
pray发布了新的文献求助10
10秒前
10秒前
怡然千琴发布了新的文献求助10
10秒前
10秒前
jun1357完成签到,获得积分10
10秒前
研友_8Raw2Z发布了新的文献求助10
11秒前
11秒前
Tommmy发布了新的文献求助10
12秒前
13秒前
乐乐乐发布了新的文献求助10
13秒前
上官若男应助Zox采纳,获得10
14秒前
小凯完成签到,获得积分10
15秒前
CipherSage应助drjyang采纳,获得10
16秒前
LHZ发布了新的文献求助10
16秒前
洛尘完成签到,获得积分10
16秒前
小陈发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
自由冬亦发布了新的文献求助50
18秒前
科研通AI6应助qi采纳,获得10
18秒前
百无禁忌完成签到,获得积分10
18秒前
河中医朵花完成签到,获得积分10
19秒前
rachel03发布了新的文献求助30
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259353
求助须知:如何正确求助?哪些是违规求助? 4421049
关于积分的说明 13761672
捐赠科研通 4294788
什么是DOI,文献DOI怎么找? 2356585
邀请新用户注册赠送积分活动 1352976
关于科研通互助平台的介绍 1313938