已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bridging the g-C3N4 Interlayers for Enhanced Photocatalysis

光催化 石墨氮化碳 兴奋剂 带隙 催化作用 材料科学 可见光谱 共轭体系 电子结构 载流子 氮化碳 聚合 纳米技术 化学 光化学 光电子学 计算化学 有机化学 聚合物 复合材料
作者
Ting Xiong,Wanglai Cen,Yuxin Zhang,Fan Dong
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:6 (4): 2462-2472 被引量:1100
标识
DOI:10.1021/acscatal.5b02922
摘要

Graphitic carbon nitride (g-C3N4) has been widely investigated and applied in photocatalysis and catalysis, but its performance is still unsatisfactory. Here, we demonstrated that K-doped g-C3N4 with a unique electronic structure possessed highly enhanced visible-light photocatalytic performance for NO removal, which was superior to Na-doped g-C3N4. DFT calculations revealed that K or Na doping can narrow the bandgap of g-C3N4. K atoms, intercalated into the g-C3N4 interlayer via bridging the layers, could decrease the electronic localization and extend the π conjugated system, whereas Na atoms tended to be doped into the CN planes and increased the in-planar electron density. On the basis of theoretical calculation results, we synthesized K-doped g-C3N4 and Na-doped g-C3N4 by a facile thermal polymerization method. Consistent with the theoretical prediction, it was found that K was intercalated into the space between the g-C3N4 layers. The K-intercalated g-C3N4 sample showed increased visible-light absorption, efficient separation of charge carriers, and strong oxidation capability, benefiting from the narrowed band gap, extended π conjugated systems, and positive-shifted valence band position, respectively. Despite that the Na-doped g-C3N4 exhibited narrowed bandgap, the high recombination rate of carriers resulted in the reduced photocatalytic performance. Our discovery provides a promising route to manipulate the photocatalytic activity simply by introducing K atoms in the interlayer and gains a deep understanding of doping chemistry with congeners. The present work could provide new insights into the mechanistic understanding and the design of electronically optimized layered photocatalysts for enhanced solar energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助55555555采纳,获得30
2秒前
fhg完成签到 ,获得积分10
2秒前
仁爱的平凡完成签到,获得积分10
2秒前
感动乐双发布了新的文献求助10
4秒前
不知所措的咪完成签到,获得积分10
4秒前
5秒前
cj发布了新的文献求助10
6秒前
桐桐应助33采纳,获得10
8秒前
8秒前
8秒前
aimynora完成签到 ,获得积分10
8秒前
ding应助貔貅采纳,获得10
11秒前
Grace完成签到,获得积分10
12秒前
完美世界应助盲点采纳,获得10
14秒前
17秒前
zsyhcl应助smm采纳,获得10
19秒前
20秒前
纯真绣连发布了新的文献求助10
21秒前
oscar完成签到,获得积分10
23秒前
24秒前
略略略完成签到 ,获得积分10
25秒前
哲000完成签到 ,获得积分10
27秒前
Criminology34应助科研通管家采纳,获得10
27秒前
Criminology34应助科研通管家采纳,获得10
27秒前
27秒前
Jasper应助科研通管家采纳,获得10
28秒前
上官若男应助科研通管家采纳,获得10
28秒前
28秒前
852应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
彭于晏应助科研通管家采纳,获得10
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
惊蛰时分听春雷完成签到,获得积分10
29秒前
依晨发布了新的文献求助10
30秒前
lqqq完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681062
求助须知:如何正确求助?哪些是违规求助? 5003654
关于积分的说明 15174723
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594387
邀请新用户注册赠送积分活动 1547528
关于科研通互助平台的介绍 1505465