Bridging the g-C3N4 Interlayers for Enhanced Photocatalysis

光催化 石墨氮化碳 兴奋剂 带隙 催化作用 材料科学 可见光谱 共轭体系 电子结构 载流子 氮化碳 聚合 纳米技术 化学 光化学 光电子学 计算化学 有机化学 聚合物 复合材料
作者
Ting Xiong,Wanglai Cen,Yuxin Zhang,Fan Dong
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:6 (4): 2462-2472 被引量:1100
标识
DOI:10.1021/acscatal.5b02922
摘要

Graphitic carbon nitride (g-C3N4) has been widely investigated and applied in photocatalysis and catalysis, but its performance is still unsatisfactory. Here, we demonstrated that K-doped g-C3N4 with a unique electronic structure possessed highly enhanced visible-light photocatalytic performance for NO removal, which was superior to Na-doped g-C3N4. DFT calculations revealed that K or Na doping can narrow the bandgap of g-C3N4. K atoms, intercalated into the g-C3N4 interlayer via bridging the layers, could decrease the electronic localization and extend the π conjugated system, whereas Na atoms tended to be doped into the CN planes and increased the in-planar electron density. On the basis of theoretical calculation results, we synthesized K-doped g-C3N4 and Na-doped g-C3N4 by a facile thermal polymerization method. Consistent with the theoretical prediction, it was found that K was intercalated into the space between the g-C3N4 layers. The K-intercalated g-C3N4 sample showed increased visible-light absorption, efficient separation of charge carriers, and strong oxidation capability, benefiting from the narrowed band gap, extended π conjugated systems, and positive-shifted valence band position, respectively. Despite that the Na-doped g-C3N4 exhibited narrowed bandgap, the high recombination rate of carriers resulted in the reduced photocatalytic performance. Our discovery provides a promising route to manipulate the photocatalytic activity simply by introducing K atoms in the interlayer and gains a deep understanding of doping chemistry with congeners. The present work could provide new insights into the mechanistic understanding and the design of electronically optimized layered photocatalysts for enhanced solar energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助jinzhituoyan采纳,获得10
1秒前
李健的小迷弟应助wzhnb采纳,获得10
3秒前
4秒前
WZL完成签到,获得积分10
4秒前
xiekunwhy完成签到,获得积分10
4秒前
大魔王完成签到 ,获得积分10
5秒前
啤酒半斤完成签到,获得积分10
5秒前
6秒前
淡然冬灵发布了新的文献求助10
6秒前
Ming完成签到,获得积分10
8秒前
durance完成签到,获得积分10
8秒前
tiger完成签到,获得积分10
8秒前
西因应助小新麻麻采纳,获得10
9秒前
九月发布了新的文献求助10
10秒前
刘大白发布了新的文献求助10
10秒前
隐形曼青应助jiaman1031采纳,获得10
10秒前
11秒前
宜菏发布了新的文献求助20
12秒前
13秒前
追寻翩跹完成签到,获得积分10
13秒前
cc951229完成签到,获得积分10
14秒前
孙一完成签到,获得积分10
14秒前
14秒前
15秒前
zenabia完成签到 ,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
wzhnb发布了新的文献求助10
18秒前
丘比特应助姜恒采纳,获得10
18秒前
God完成签到 ,获得积分10
19秒前
kiana完成签到,获得积分10
21秒前
qianlu完成签到 ,获得积分10
21秒前
斯文败类应助胡lucky采纳,获得10
22秒前
CR7应助XING采纳,获得20
22秒前
22秒前
Barkdog完成签到,获得积分10
22秒前
完美的鹤完成签到,获得积分10
23秒前
木木木木木完成签到 ,获得积分10
23秒前
雨jia完成签到,获得积分10
24秒前
Spring完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685887
关于积分的说明 14840244
捐赠科研通 4675397
什么是DOI,文献DOI怎么找? 2538559
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144