PocketDepth: A new depth based algorithm for identification of ligand binding sites in proteins

集合(抽象数据类型) 假阳性悖论 鉴定(生物学) 秩(图论) 算法 聚类分析 计算机科学 子空间拓扑 数据挖掘 功能(生物学) 数学 模式识别(心理学) 人工智能 生物 组合数学 遗传学 植物 程序设计语言
作者
Kalidas Yeturu,Nagasuma Chandra
出处
期刊:Journal of Structural Biology [Elsevier]
卷期号:161 (1): 31-42 被引量:95
标识
DOI:10.1016/j.jsb.2007.09.005
摘要

Predicting functional sites in proteins is important in structural biology for understanding the function and also for structure-based drug design. Here we report a new binding site prediction method PocketDepth, which is geometry based and uses a depth based clustering. Depth is an important parameter considered during protein structure visualisation and analysis but has been used more often intuitively than systematically. Our current implementation of depth reflects how central a given subspace is to a putative pocket. We have tested the algorithm against PDBbind, a large curated set of 1091 proteins. A prediction was considered a true-positive if the predicted pocket had at least 10% overlap with the actual ligand. Two different parameter sets, 'deeper' and 'surface' were used, for wider coverage of different types of binding sites in proteins. With deeper parameters, true-positives were observed for 841 proteins, resulting in a prediction accuracy of 77%, for any ranked prediction. Of these, 55.2% were first ranked predictions, whereas 91.2% and 97.4% were covered in the first 5 and 10 ranks, respectively. With the 'surface' parameters, a prediction rate of 95.8% was observed, albeit with much poorer ranks. The deeper set identified pocket boundaries more precisely and yielded better ranks, while the latter missed fewer predictions and hence had better coverage. The two parameter sets were therefore algorithmically combined, resulting in prediction accuracies of 96.5% for any ranked prediction. About 41.8% of these were in the first rank, 82% and 94% were in top 5 and 10 ranks, respectively. The algorithm is available at http://proline.physics.iisc.ernet.in/pocketdepth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuwq发布了新的文献求助30
1秒前
2秒前
Lucas应助skbz采纳,获得10
3秒前
狂野砖头完成签到,获得积分10
5秒前
wanci应助LHX采纳,获得10
6秒前
6秒前
有魅力听枫完成签到,获得积分10
7秒前
阿橘完成签到,获得积分10
7秒前
彭于彦祖应助Dingyiren采纳,获得20
9秒前
9秒前
小白发布了新的文献求助10
9秒前
轻松的曲奇完成签到,获得积分10
10秒前
wangbq完成签到,获得积分10
11秒前
闪闪的妙竹完成签到 ,获得积分10
11秒前
11秒前
XINGXING发布了新的文献求助10
11秒前
13秒前
yyyyyj关注了科研通微信公众号
14秒前
wangbq发布了新的文献求助10
14秒前
AAA完成签到,获得积分10
15秒前
拼搏遥完成签到,获得积分10
17秒前
雷小牛发布了新的文献求助10
17秒前
搞怪便当完成签到,获得积分10
18秒前
空空完成签到,获得积分10
19秒前
shanyuee完成签到,获得积分10
19秒前
俏皮诺言发布了新的文献求助10
23秒前
miao完成签到,获得积分10
24秒前
25秒前
酷波er应助水濑心源采纳,获得10
26秒前
26秒前
科研通AI2S应助金属多酚采纳,获得10
28秒前
hujin应助金属多酚采纳,获得10
28秒前
wangbq发布了新的文献求助10
28秒前
Ymir完成签到,获得积分10
29秒前
乌龟娟发布了新的文献求助10
30秒前
小二郎应助吃吃采纳,获得10
31秒前
海龟完成签到 ,获得积分10
31秒前
31秒前
Ymir发布了新的文献求助10
32秒前
大秦骑兵完成签到,获得积分20
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163348
求助须知:如何正确求助?哪些是违规求助? 2814206
关于积分的说明 7903775
捐赠科研通 2473774
什么是DOI,文献DOI怎么找? 1317050
科研通“疑难数据库(出版商)”最低求助积分说明 631614
版权声明 602187