亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact of regression methods on improved effects of soil structure on soil water retention estimates

Pedotransfer函数 支持向量机 土壤水分 范畴变量 背景(考古学) 回归分析 土壤科学 回归 数学 统计 计算机科学 环境科学 机器学习 导水率 生物 古生物学
作者
Minh Phương Nguyễn,Jan De Pue,Khoa Le,Wim Cornelis
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:525: 598-606 被引量:25
标识
DOI:10.1016/j.jhydrol.2015.04.014
摘要

Increasing the accuracy of pedotransfer functions (PTFs), an indirect method for predicting non-readily available soil features such as soil water retention characteristics (SWRC), is of crucial importance for large scale agro-hydrological modeling. Adding significant predictors (i.e., soil structure), and implementing more flexible regression algorithms are among the main strategies of PTFs improvement. The aim of this study was to investigate whether the improved effect of categorical soil structure information on estimating soil-water content at various matric potentials, which has been reported in literature, could be enduringly captured by regression techniques other than the usually applied linear regression. Two data mining techniques, i.e., Support Vector Machines (SVM), and k-Nearest Neighbors (kNN), which have been recently introduced as promising tools for PTF development, were utilized to test if the incorporation of soil structure will improve PTF's accuracy under a context of rather limited training data. The results show that incorporating descriptive soil structure information, i.e., massive, structured and structureless, as grouping criterion can improve the accuracy of PTFs derived by SVM approach in the range of matric potential of −6 to −33 kPa (average RMSE decreased up to 0.005 m3 m−3 after grouping, depending on matric potentials). The improvement was primarily attributed to the outperformance of SVM-PTFs calibrated on structureless soils. No improvement was obtained with kNN technique, at least not in our study in which the data set became limited in size after grouping. Since there is an impact of regression techniques on the improved effect of incorporating qualitative soil structure information, selecting a proper technique will help to maximize the combined influence of flexible regression algorithms and soil structure information on PTF accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若尘发布了新的文献求助10
3秒前
TruongThe完成签到,获得积分20
34秒前
小蘑菇应助明亮的涵山采纳,获得10
40秒前
小豆芽完成签到,获得积分10
46秒前
明亮的涵山完成签到,获得积分20
51秒前
1分钟前
1分钟前
1分钟前
简单慕凝完成签到,获得积分10
1分钟前
1分钟前
宁宁大王发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
爆米花应助catherine采纳,获得10
2分钟前
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
WWW完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
春宇浩然发布了新的文献求助10
3分钟前
3分钟前
4分钟前
二狗完成签到 ,获得积分10
4分钟前
哲000完成签到 ,获得积分10
4分钟前
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
踏云完成签到 ,获得积分20
5分钟前
lsl完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
wwrz发布了新的文献求助30
5分钟前
5分钟前
春宇浩然完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723904
求助须知:如何正确求助?哪些是违规求助? 5282409
关于积分的说明 15299338
捐赠科研通 4872163
什么是DOI,文献DOI怎么找? 2616598
邀请新用户注册赠送积分活动 1566476
关于科研通互助平台的介绍 1523314