The reported reduction in cancer risk in those suffering from schizophrenia may be because antipsychotic medications have antineoplastic effects. In this study, 6 antipsychotic agents with a range of structural and pharmacological properties (reserpine, chlorpromazine, haloperidol, pimozide, risperidone and olanzapine), were screened for their effect on the viability of cell lines derived from lymphoblastoma, neuroblastoma, non-small cell lung cancer and breast adenocarcinoma. We aimed to determine if antipsychotic drugs in general possess cancer-specific cytotoxic potential, and whether it can be attributed to a common mode of action. With the exception of risperidone, all drugs tested displayed selective inhibition of the viability of cancer cell lines compared with normal cells. Using Affymetrix expression microarrays and quantitative real-time polymerase chain reaction, we found that for the antipsychotic drugs, olanzapine and pimozide, cytotoxicity appeared to be mediated via effects on cholesterol homeostasis. The role of cholesterol metabolism in the selective cytotoxicity of these drugs was supported by demonstration of their increased lethality when coadministered with a cholesterol synthesis inhibitor, mevastatin. Also, pimozide and olanzapine showed accelerating cytotoxic effects from 12 to 48 hr in time course studies, mirroring the time-dependent onset of cytotoxicity induced by the amphiphile, U18666A. On the basis of these results, we concluded that the Class II cationic amphiphilic properties of antipsychotic drugs contribute to their cytotoxic effects by acting on cholesterol homeostasis and altering the biophysical properties of cellular membranes, and that drugs affecting membrane-related cholesterol pathways warrant further investigation as potential augmentors of standard cancer chemotherapy.