适应(眼睛)
国家(计算机科学)
人口规模
计算机科学
功能(生物学)
数学优化
还原(数学)
数学
算法
人口
生物
进化生物学
几何学
社会学
人口学
神经科学
作者
Ryoji Tanabe,Alex Fukunaga
出处
期刊:Congress on Evolutionary Computation
日期:2014-07-01
被引量:816
标识
DOI:10.1109/cec.2014.6900380
摘要
SHADE is an adaptive DE which incorporates success-history based parameter adaptation and one of the state-of-the-art DE algorithms. This paper proposes L-SHADE, which further extends SHADE with Linear Population Size Reduction (LPSR), which continually decreases the population size according to a linear function. We evaluated the performance of L-SHADE on CEC2014 benchmarks and compared its search performance with state-of-the-art DE algorithms, as well as the state-of-the-art restart CMA-ES variants. The experimental results show that L-SHADE is quite competitive with state-of-the-art evolutionary algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI